IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v2y2014i1p12n1.html
   My bibliography  Save this article

Monotone Confounding, Monotone Treatment Selection and Monotone Treatment Response

Author

Listed:
  • Jiang Zhichao

    (Peking University, Beijing, China)

  • Chiba Yasutaka

    (Division of Biostatistics, Clinical Research Center, Kinki University School of Medicine, Osaka, Japan)

  • VanderWeele Tyler J.

    (Departments of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, MA, USA)

Abstract

Manski (Monotone treatment response. Econometrica 1997;65:1311–34) and Manski and Pepper (Monotone instrumental variables: with an application to the returns to schooling. Econometrica 2000;68:997–1010) gave sharp bounds on causal effects under the assumptions of monotone treatment response (MTR) and monotone treatment selection (MTS). VanderWeele (The sign of the bias of unmeasured confounding. Biometrics 2008;64:702–6) provided bounds for binary treatment under an assumption of monotone confounding (MC). We discuss the relation between MC and MTS and provide bounds under various combinations of these assumptions. We show that MC and MTS coincide for a binary treatment, but MC does not imply MTS for a treatment variable with more than two levels.

Suggested Citation

  • Jiang Zhichao & Chiba Yasutaka & VanderWeele Tyler J., 2014. "Monotone Confounding, Monotone Treatment Selection and Monotone Treatment Response," Journal of Causal Inference, De Gruyter, vol. 2(1), pages 1-12, March.
  • Handle: RePEc:bpj:causin:v:2:y:2014:i:1:p:12:n:1
    DOI: 10.1515/jci-2012-0006
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2012-0006
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2012-0006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    3. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    4. Charles F. Manski & John V. Pepper, 2009. "More on monotone instrumental variables," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 200-216, January.
    5. Tyler J. VanderWeele, 2008. "The Sign of the Bias of Unmeasured Confounding," Biometrics, The International Biometric Society, vol. 64(3), pages 702-706, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sianesi, Barbara, 2017. "Evidence of randomisation bias in a large-scale social experiment: The case of ERA," Journal of Econometrics, Elsevier, vol. 198(1), pages 41-64.
    2. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    3. Demuynck, Thomas, 2015. "Bounding average treatment effects: A linear programming approach," Economics Letters, Elsevier, vol. 137(C), pages 75-77.
    4. Christelis, Dimitris & Dobrescu, Loretti I., 2020. "The causal effect of social activities on cognition: Evidence from 20 European countries," Social Science & Medicine, Elsevier, vol. 247(C).
    5. Charles F. Manski & John V. Pepper, 2018. "How Do Right-to-Carry Laws Affect Crime Rates? Coping with Ambiguity Using Bounded-Variation Assumptions," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 232-244, May.
    6. Vishal Kamat, 2017. "Identifying the Effects of a Program Offer with an Application to Head Start," Papers 1711.02048, arXiv.org, revised Aug 2023.
    7. Monique De Haan & Edwin Leuven, 2020. "Head Start and the Distribution of Long-Term Education and Labor Market Outcomes," Journal of Labor Economics, University of Chicago Press, vol. 38(3), pages 727-765.
    8. Joachim Freyberger & Joel L. Horowitz, 2012. "Identification and shape restrictions in nonparametric instrumental variables estimation," CeMMAP working papers CWP15/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Brent Kreider & John V. Pepper & Manan Roy, 2016. "Identifying the Effects of WIC on Food Insecurity Among Infants and Children," Southern Economic Journal, John Wiley & Sons, vol. 82(4), pages 1106-1122, April.
    10. Kyunghoon Ban & Désiré Kédagni, 2022. "Nonparametric bounds on treatment effects with imperfect instruments [Instrument-based estimation with binarized treatments: Issues and tests for the exclusion restriction]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 477-493.
    11. Battistin, Erich & De Nadai, Michele & Vuri, Daniela, 2017. "Counting rotten apples: Student achievement and score manipulation in Italian elementary Schools," Journal of Econometrics, Elsevier, vol. 200(2), pages 344-362.
    12. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    13. Aizawa, T.;, 2019. "Reviewing the Existing Evidence of the Conditional Cash Transfer in India through the Partial Identification Approach," Health, Econometrics and Data Group (HEDG) Working Papers 19/24, HEDG, c/o Department of Economics, University of York.
    14. Sungwon Lee, 2024. "Partial identification and inference for conditional distributions of treatment effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 107-127, January.
    15. Qian, Hang, 2011. "Bayesian inference with monotone instrumental variables," MPRA Paper 32672, University Library of Munich, Germany.
    16. Lukáš Lafférs, 2019. "Identification in Models with Discrete Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 657-696, February.
    17. Tsunao Okumura & Emiko Usui, 2014. "Concave‐monotone treatment response and monotone treatment selection: With an application to the returns to schooling," Quantitative Economics, Econometric Society, vol. 5, pages 175-194, March.
    18. Brent Kreider & Richard J. Manski & John Moeller & John Pepper, 2015. "The Effect of Dental Insurance on the Use of Dental Care for Older Adults: A Partial Identification Analysis," Health Economics, John Wiley & Sons, Ltd., vol. 24(7), pages 840-858, July.
    19. Lukáš Lafférs, 2019. "Bounding average treatment effects using linear programming," Empirical Economics, Springer, vol. 57(3), pages 727-767, September.
    20. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:2:y:2014:i:1:p:12:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.