IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41458-5.html
   My bibliography  Save this article

Impacts of climate change, population growth, and power sector decarbonization on urban building energy use

Author

Listed:
  • Chenghao Wang

    (Stanford University
    University of Oklahoma
    University of Oklahoma)

  • Jiyun Song

    (The University of Hong Kong
    The University of Hong Kong
    Wuhan University)

  • Dachuan Shi

    (The University of Hong Kong)

  • Janet L. Reyna

    (National Renewable Energy Laboratory)

  • Henry Horsey

    (National Renewable Energy Laboratory)

  • Sarah Feron

    (Universidad de Santiago de Chile
    University of Groningen)

  • Yuyu Zhou

    (The University of Hong Kong
    The University of Hong Kong)

  • Zutao Ouyang

    (Stanford University)

  • Ying Li

    (Engineering Research Center of Eco-environment in Three Gorges Reservoir Region
    China Three Gorges University)

  • Robert B. Jackson

    (Stanford University
    Stanford University
    Stanford University)

Abstract

Climate, technologies, and socio-economic changes will influence future building energy use in cities. However, current low-resolution regional and state-level analyses are insufficient to reliably assist city-level decision-making. Here we estimate mid-century hourly building energy consumption in 277 U.S. urban areas using a bottom-up approach. The projected future climate change results in heterogeneous changes in energy use intensity (EUI) among urban areas, particularly under higher warming scenarios, with on average 10.1–37.7% increases in the frequency of peak building electricity EUI but over 110% increases in some cities. For each 1 °C of warming, the mean city-scale space-conditioning EUI experiences an average increase/decrease of ~14%/ ~ 10% for space cooling/heating. Heterogeneous city-scale building source energy use changes are primarily driven by population and power sector changes, on average ranging from –9% to 40% with consistent south–north gradients under different scenarios. Across the scenarios considered here, the changes in city-scale building source energy use, when averaged over all urban areas, are as follows: –2.5% to –2.0% due to climate change, 7.3% to 52.2% due to population growth, and –17.1% to –8.9% due to power sector decarbonization. Our findings underscore the necessity of considering intercity heterogeneity when developing sustainable and resilient urban energy systems.

Suggested Citation

  • Chenghao Wang & Jiyun Song & Dachuan Shi & Janet L. Reyna & Henry Horsey & Sarah Feron & Yuyu Zhou & Zutao Ouyang & Ying Li & Robert B. Jackson, 2023. "Impacts of climate change, population growth, and power sector decarbonization on urban building energy use," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41458-5
    DOI: 10.1038/s41467-023-41458-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41458-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41458-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bryan Jones & Brian C. O’Neill & Larry McDaniel & Seth McGinnis & Linda O. Mearns & Claudia Tebaldi, 2015. "Future population exposure to US heat extremes," Nature Climate Change, Nature, vol. 5(7), pages 652-655, July.
    2. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential Consumption of Gas and Electricity in the U.S.: The Role of Prices and Income," Sustainable Development Papers 99637, Fondazione Eni Enrico Mattei (FEEM).
    3. Xi Lu & Michael B. McElroy & Wei Peng & Shiyang Liu & Chris P. Nielsen & Haikun Wang, 2016. "Challenges faced by China compared with the US in developing wind power," Nature Energy, Nature, vol. 1(6), pages 1-6, June.
    4. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    5. Jianhua Huang & Kevin Robert Gurney, 2016. "Impact of climate change on U.S. building energy demand: sensitivity to spatiotemporal scales, balance point temperature, and population distribution," Climatic Change, Springer, vol. 137(1), pages 171-185, July.
    6. Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.
    7. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    8. Yang, Jiachuan & Wang, Zhi-Hua & Kaloush, Kamil E., 2015. "Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 830-843.
    9. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    10. White, Philip R. & Rhodes, Joshua D. & Wilson, Eric J.H. & Webber, Michael E., 2021. "Quantifying the impact of residential space heating electrification on the Texas electric grid," Applied Energy, Elsevier, vol. 298(C).
    11. Raji, Babak & Tenpierik, Martin J. & van den Dobbelsteen, Andy, 2015. "The impact of greening systems on building energy performance: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 610-623.
    12. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    13. Melissa R. Allen & Steven J. Fernandez & Joshua S. Fu & Mohammed M. Olama, 2016. "Impacts of climate change on sub-regional electricity demand and distribution in the southern United States," Nature Energy, Nature, vol. 1(8), pages 1-9, August.
    14. Saadatian, Omidreza & Sopian, K. & Salleh, E. & Lim, C.H. & Riffat, Safa & Saadatian, Elham & Toudeshki, Arash & Sulaiman, M.Y., 2013. "A review of energy aspects of green roofs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 155-168.
    15. Bas J. van Ruijven & Enrica De Cian & Ian Sue Wing, 2019. "Amplification of future energy demand growth due to climate change," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    16. Yating Li & William A. Pizer & Libo Wu, 2019. "Climate change and residential electricity consumption in the Yangtze River Delta, China," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(2), pages 472-477, January.
    17. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
    18. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
    19. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    20. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    21. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    22. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2014. "The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources," Applied Energy, Elsevier, vol. 134(C), pages 75-89.
    23. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    24. Fumo, Nelson, 2014. "A review on the basics of building energy estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
    25. Janet L. Reyna & Mikhail V. Chester, 2017. "Energy efficiency to reduce residential electricity and natural gas use under climate change," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saez, R. & Boer, D. & Shobo, A.B. & Vallès, M., 2024. "Self-consumption potential and surplus compensation policy impact on rooftop photovoltaic systems in Spain," Renewable Energy, Elsevier, vol. 229(C).
    2. Vavouris, Apostolos & Guasselli, Fernanda & Stankovic, Lina & Stankovic, Vladimir & Gram-Hanssen, Kirsten & Didierjean, Sébastien, 2024. "A complex mixed-methods data-driven energy-centric evaluation of net-positive households," Applied Energy, Elsevier, vol. 367(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    2. Haider, Salman & Zafar, Shadman & Jindal, Abhinav, 2024. "Socioeconomic drivers of residential electricity expenditures in India," Utilities Policy, Elsevier, vol. 88(C).
    3. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    4. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    5. Park, Sungjun & Kim, Jinsoo, 2018. "The effect of interest in renewable energy on US household electricity consumption: An analysis using Google Trends data," Renewable Energy, Elsevier, vol. 127(C), pages 1004-1010.
    6. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    7. Cuihui Xia & Tandong Yao & Weicai Wang & Wentao Hu, 2022. "Effect of Climate on Residential Electricity Consumption: A Data-Driven Approach," Energies, MDPI, vol. 15(9), pages 1-20, May.
    8. Prami Sengupta & Randall Cantrell, 2021. "Context Matters: The effects of budgetary and knowledge constraints on residential energy conservation," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(4), pages 561-573, December.
    9. Tamara Sofía Propato & Diego Abelleyra & María Semmartin & Santiago R. Verón, 2021. "Differential sensitivities of electricity consumption to global warming across regions of Argentina," Climatic Change, Springer, vol. 166(1), pages 1-18, May.
    10. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    11. Zhang, Guoxing & Shen, Lin & Su, Bin, 2023. "Temperature change and daily urban-rural residential electricity consumption in northwestern China: Responsiveness and inequality," Energy Economics, Elsevier, vol. 126(C).
    12. Bo wang & Nana Deng & Wenhui Zhao & Zhaohua Wang, 2022. "Residential power demand side management optimization based on fine-grained mixed frequency data," Annals of Operations Research, Springer, vol. 316(1), pages 603-622, September.
    13. Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
    14. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.
    15. Dorothée Charlier & Sondès Kahouli, 2018. "Fuel poverty and residential energy demand: how fuel-poor households react to energy price fluctuations," Post-Print halshs-01957771, HAL.
    16. Romero-Jordán, Desiderio & del Río, Pablo & Peñasco, Cristina, 2016. "An analysis of the welfare and distributive implications of factors influencing household electricity consumption," Energy Policy, Elsevier, vol. 88(C), pages 361-370.
    17. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    18. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    19. Tosapol Apaitan & Thiti Tosborvorn & Wichsinee Wibulpolprasert, 2020. "Bunching for Free Electricity," PIER Discussion Papers 136, Puey Ungphakorn Institute for Economic Research.
    20. Yanan Liu & Yixuan Gao & Yu Hao & Hua Liao, 2016. "The Relationship between Residential Electricity Consumption and Income: A Piecewise Linear Model with Panel Data," Energies, MDPI, vol. 9(10), pages 1-11, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41458-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.