IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v318y2022ics0306261922005505.html
   My bibliography  Save this article

Job creation in response to Japan’s energy transition towards deep mitigation: An extension of partial equilibrium integrated assessment models

Author

Listed:
  • Ju, Yiyi
  • Sugiyama, Masahiro
  • Kato, Etsushi
  • Oshiro, Ken
  • Wang, Jiayang

Abstract

Energy transition towards carbon neutrality by 2050 in Japan will involve renewable energy development and a shift from fossil fuel energy. Investigating the domestic employment level in response to such energy transition and their implications of different decarbonization scenarios is urgently needed. We introduced the results from partial equilibrium (PE) integrated assessment models (IAMs), which provided a more comprehensive representation of power generation mix and capacity (based on a bottom-up modeling approach), to the input–output (IO) framework, which served as an efficient tool for mapping inter-sectoral transactions in the macroeconomy (based on a top-down modeling approach). By this approach, the uncertainties among different Japan national decarbonization scenarios can be investigated. We estimated the job creation in manufacturing sectors, construction sectors, electricity supply sectors, and all other sectors induced by the investment in the introduction of renewable energy capacity introduction and all power generation activities. The results show that: i) positive numbers in total job creation may occur in 2030 (e.g., under the default scenario reaching 80% emission reduction by 2050), as the job creation in the manufacture and construction of renewable related activities will exceed the job losses in mining, construction of thermal power, and thermal power generation activities; ii) however, such job creation will dramatically increase in 2050, leading to possible workforce shortages within Japan; iii) over 30% of the employment in non-electricity and manufacture sectors may be induced overseas in 2050. Compared with high renewable potential pathways, the long-term labor supply issues could be eased under low energy service demand pathways in Japan.

Suggested Citation

  • Ju, Yiyi & Sugiyama, Masahiro & Kato, Etsushi & Oshiro, Ken & Wang, Jiayang, 2022. "Job creation in response to Japan’s energy transition towards deep mitigation: An extension of partial equilibrium integrated assessment models," Applied Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:appene:v:318:y:2022:i:c:s0306261922005505
    DOI: 10.1016/j.apenergy.2022.119178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    2. Mori, Akihisa, 2019. "Temporal dynamics of infrasystem transition: The case of electricity system transition in Japan," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 186-194.
    3. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.
    4. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    5. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    6. Felix Creutzig & Joyashree Roy & William F. Lamb & Inês M. L. Azevedo & Wändi Bruine de Bruin & Holger Dalkmann & Oreane Y. Edelenbosch & Frank W. Geels & Arnulf Grubler & Cameron Hepburn & Edgar G. H, 2018. "Towards demand-side solutions for mitigating climate change," Nature Climate Change, Nature, vol. 8(4), pages 260-263, April.
    7. Hondo, Hiroki & Moriizumi, Yue, 2017. "Employment creation potential of renewable power generation technologies: A life cycle approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 128-136.
    8. Shunichi Hienuki & Yuki Kudoh & Hiroki Hondo, 2015. "Establishing a Framework for Evaluating Environmental and Socio-Economic Impacts by Power Generation Technology Using an Input–output Table—A Case Study of Japanese Future Electricity Grid Mix," Sustainability, MDPI, vol. 7(12), pages 1-18, November.
    9. Shinichiro Fujimori & Ken Oshiro & Hiroto Shiraki & Tomoko Hasegawa, 2019. "Energy transformation cost for the Japanese mid-century strategy," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    10. Oshiro, Ken & Fujimori, Shinichiro & Ochi, Yuki & Ehara, Tomoki, 2021. "Enabling energy system transition toward decarbonization in Japan through energy service demand reduction," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koasidis, Konstantinos & Nikas, Alexandros & Van de Ven, Dirk-Jan & Xexakis, Georgios & Forouli, Aikaterini & Mittal, Shivika & Gambhir, Ajay & Koutsellis, Themistoklis & Doukas, Haris, 2022. "Towards a green recovery in the EU: Aligning further emissions reductions with short- and long-term energy-sector employment gains," Energy Policy, Elsevier, vol. 171(C).
    2. Caglar, Abdullah Emre & Daştan, Muhammet & Avci, Salih Bortecine, 2024. "Persistence of disaggregate energy RD&D expenditures in top-five economies: Evidence from artificial neural network approach," Applied Energy, Elsevier, vol. 365(C).
    3. Guo, Zhi & Mao, Xianqiang & Lu, Jianhong & Gao, Yubing & Chen, Xing & Zhang, Shining & Ma, Zhiyuan, 2024. "Can a new power system create more employment in China?," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    2. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    3. Yuru Guan & Jin Yan & Yuli Shan & Yannan Zhou & Ye Hang & Ruoqi Li & Yu Liu & Binyuan Liu & Qingyun Nie & Benedikt Bruckner & Kuishuang Feng & Klaus Hubacek, 2023. "Burden of the global energy price crisis on households," Nature Energy, Nature, vol. 8(3), pages 304-316, March.
    4. Schönheit, David & Hladik, Dirk & Hobbie, Hannes & Möst, Dominik, 2020. "ELMOD documentation: Modeling of flow-based market coupling and congestion management," EconStor Preprints 217278, ZBW - Leibniz Information Centre for Economics.
    5. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    6. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
    7. Castro, Damaris & Bleys, Brent, 2023. "Do people think they have enough? A subjective income sufficiency assessment," Ecological Economics, Elsevier, vol. 205(C).
    8. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    9. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    10. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    11. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    12. Jan Málek & Lukáš Recka & Karel Janda, 2017. "Impact of German Energiewende on transmission lines in the Central European region," CAMA Working Papers 2017-72, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    13. Bauer, Jan M. & Aarestrup, Simon C. & Hansen, Pelle G. & Reisch, Lucia A., 2022. "Nudging more sustainable grocery purchases: Behavioural innovations in a supermarket setting," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    14. Sovacool, Benjamin K. & Lipson, Matthew M. & Chard, Rose, 2019. "Temporality, vulnerability, and energy justice in household low carbon innovations," Energy Policy, Elsevier, vol. 128(C), pages 495-504.
    15. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    16. Zapata, Oscar, 2022. "Renewable Energy and Community Development," OSF Preprints tk59y, Center for Open Science.
    17. Arvanitopoulos, T. & Agnolucci, P., 2020. "The long-term effect of renewable electricity on employment in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Marquina, Jesús & Colinet, María José & Pablo-Romero, María del P., 2021. "The economic value of olive sector biomass for thermal and electrical uses in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    19. William Wills & Emilio Lebre La Rovere & Carolina Grottera & Giovanna Ferrazzo Naspolini & Gaëlle Le Treut & F. Ghersi & Julien Lefèvre & Carolina Burle Schmidt Dubeux, 2022. "Economic and social effectiveness of carbon pricing schemes to meet Brazilian NDC targets," Post-Print hal-03500923, HAL.
    20. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:318:y:2022:i:c:s0306261922005505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.