IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v13y2023i7d10.1038_s41558-023-01692-7.html
   My bibliography  Save this article

Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy

Author

Listed:
  • Yadong Lei

    (Chinese Academy of Meteorological Sciences)

  • Zhili Wang

    (Chinese Academy of Meteorological Sciences)

  • Deying Wang

    (Chinese Academy of Meteorological Sciences)

  • Xiaoye Zhang

    (Chinese Academy of Meteorological Sciences)

  • Huizheng Che

    (Chinese Academy of Meteorological Sciences)

  • Xu Yue

    (Nanjing University of Information Science & Technology)

  • Chenguang Tian

    (Nanjing University of Information Science & Technology)

  • Junting Zhong

    (Chinese Academy of Meteorological Sciences)

  • Lifeng Guo

    (Chinese Academy of Meteorological Sciences)

  • Lei Li

    (Chinese Academy of Meteorological Sciences)

  • Hao Zhou

    (Chinese Academy of Sciences)

  • Lin Liu

    (Chinese Academy of Meteorological Sciences)

  • Yangyang Xu

    (Texas A&M University)

Abstract

Solar photovoltaic (PV) and wind energy provide carbon-free renewable energy to reach ambitious global carbon-neutrality goals, but their yields are in turn influenced by future climate change. Here, using a bias-corrected large ensemble of multi-model simulations under an envisioned post-pandemic green recovery, we find a general enhancement in solar PV over global land regions, especially in Asia, relative to the well-studied baseline scenario with modest climate change mitigation. Our results also show a notable west-to-east interhemispheric shift of wind energy by the mid-twenty-first century, under the two global carbon-neutral scenarios. Both solar PV and wind energy are projected to have a greater temporal stability in most land regions due to deep decarbonization. The co-benefits in enhancing and stabilizing renewable energy sources demonstrate a beneficial feedback in achieving global carbon neutrality and highlight Asian regions as a likely hotspot for renewable resources in future decades.

Suggested Citation

  • Yadong Lei & Zhili Wang & Deying Wang & Xiaoye Zhang & Huizheng Che & Xu Yue & Chenguang Tian & Junting Zhong & Lifeng Guo & Lei Li & Hao Zhou & Lin Liu & Yangyang Xu, 2023. "Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy," Nature Climate Change, Nature, vol. 13(7), pages 693-700, July.
  • Handle: RePEc:nat:natcli:v:13:y:2023:i:7:d:10.1038_s41558-023-01692-7
    DOI: 10.1038/s41558-023-01692-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-023-01692-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-023-01692-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Ziheng & Lu, Qinan, 2024. "Carbon dioxide fertilization, carbon neutrality, and food security," China Economic Review, Elsevier, vol. 85(C).
    2. Zhili Wang & Yadong Lei & Huizheng Che & Bo Wu & Xiaoye Zhang, 2024. "Aerosol forcing regulating recent decadal change of summer water vapor budget over the Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    2. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    3. Uche, J. & Círez, F. & Bayod, A.A. & Martínez, A., 2013. "On-grid and off-grid batch-ED (electrodialysis) process: Simulation and experimental tests," Energy, Elsevier, vol. 57(C), pages 44-54.
    4. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    5. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    6. Jerez, S. & Thais, F. & Tobin, I. & Wild, M. & Colette, A. & Yiou, P. & Vautard, R., 2015. "The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1-15.
    7. Ghanim, Marrwa S. & Farhan, Ammar A., 2023. "Projected patterns of climate change impact on photovoltaic energy potential: A case study of Iraq," Renewable Energy, Elsevier, vol. 204(C), pages 338-346.
    8. Wang, Gang & Zhao, Ke & Qiu, Tian & Yang, Xinsheng & Zhang, Yong & Zhao, Yong, 2016. "The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules," Energy, Elsevier, vol. 115(P1), pages 478-485.
    9. Park, K.E. & Kang, G.H. & Kim, H.I. & Yu, G.J. & Kim, J.T., 2010. "Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module," Energy, Elsevier, vol. 35(6), pages 2681-2687.
    10. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    11. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    12. Aissatou Ndiaye & Mounkaila Saley Moussa & Cheikh Dione & Windmanagda Sawadogo & Jan Bliefernicht & Laouali Dungall & Harald Kunstmann, 2022. "Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations," Energies, MDPI, vol. 15(24), pages 1-22, December.
    13. Dong, Xiao-Jian & Shen, Jia-Ni & He, Guo-Xin & Ma, Zi-Feng & He, Yi-Jun, 2021. "A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction," Energy, Elsevier, vol. 234(C).
    14. Alzahrani, Mussad & Shanks, Katie & Mallick, Tapas K., 2021. "Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Baldwin Cortés & Roberto Tapia & Juan J. Flores, 2021. "System-Independent Irradiance Sensorless ANN-Based MPPT for Photovoltaic Systems in Electric Vehicles," Energies, MDPI, vol. 14(16), pages 1-18, August.
    16. Arabkoohsar, A. & Ismail, K.A.R. & Machado, L. & Koury, R.N.N., 2016. "Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems," Renewable Energy, Elsevier, vol. 93(C), pages 424-441.
    17. Zhang, Yunpeng & Hao, Peng & Lu, Hao & Ma, Jiao & Yang, Ming, 2022. "Modelling and estimating performance for PV module under varying operating conditions independent of reference condition," Applied Energy, Elsevier, vol. 310(C).
    18. Ravestein, P. & van der Schrier, G. & Haarsma, R. & Scheele, R. & van den Broek, M., 2018. "Vulnerability of European intermittent renewable energy supply to climate change and climate variability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 497-508.
    19. Islam, M.M. & Hasanuzzaman, M. & Rahim, N.A. & Pandey, A.K. & Rawa, M. & Kumar, L., 2021. "Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach," Renewable Energy, Elsevier, vol. 172(C), pages 71-87.
    20. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:13:y:2023:i:7:d:10.1038_s41558-023-01692-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.