Viability of low‐grade heat conversion using liquid piston Stirling engines
Author
Abstract
Suggested Citation
DOI: 10.1002/wene.509
Download full text from publisher
References listed on IDEAS
- Sindhu Preetham Burugupally & Leland Weiss, 2018. "Power Generation via Small Length Scale Thermo-Mechanical Systems: Current Status and Challenges, a Review," Energies, MDPI, vol. 11(9), pages 1-22, August.
- Slavin, V.S. & Bakos, G.C. & Finnikov, K.A., 2009. "Conversion of thermal energy into electricity via a water pump operating in Stirling engine cycle," Applied Energy, Elsevier, vol. 86(7-8), pages 1162-1169, July.
- Motamedi, Mahmoud & Ahmadi, Rouhollah & Jokar, H., 2018. "A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation," Energy, Elsevier, vol. 155(C), pages 796-814.
- Klüppel, Rogerio P. & Gurgel, JoséMaurício M., 1998. "Thermodynamic cycle of a liquid piston pump," Renewable Energy, Elsevier, vol. 13(2), pages 261-268.
- Van de Ven, James D., 2009. "Mobile hydraulic power supply: Liquid piston Stirling engine pump," Renewable Energy, Elsevier, vol. 34(11), pages 2317-2322.
- Karabulut, H. & Çınar, C. & Oztürk, E. & Yücesu, H.S., 2010. "Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism," Renewable Energy, Elsevier, vol. 35(1), pages 138-143.
- Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
- Ngangué, Max Ndamé & Stouffs, Pascal, 2020. "Dynamic simulation of an original Joule cycle liquid pistons hot air Ericsson engine," Energy, Elsevier, vol. 190(C).
- Ahmadi, Rouhollah & Jokar, H. & Motamedi, Mahmoud, 2018. "A solar pressurizable liquid piston stirling engine: Part 2, optimization and development," Energy, Elsevier, vol. 164(C), pages 1200-1215.
- Chang-Sheng Lin & Jui-Kai Liu & Hung-Tse Chiang, 2020. "A U-Shaped Oscillatory Liquid Piston Compression Air Conditioner Driven by Rotary Displacer Stirling Engine," Energies, MDPI, vol. 13(16), pages 1-15, August.
- Markides, Christos N. & Osuolale, Adebayo & Solanki, Roochi & Stan, Guy-Bart V., 2013. "Nonlinear heat transfer processes in a two-phase thermofluidic oscillator," Applied Energy, Elsevier, vol. 104(C), pages 958-977.
- Markides, Christos N. & Solanki, Roochi & Galindo, Amparo, 2014. "Working fluid selection for a two-phase thermofluidic oscillator: Effect of thermodynamic properties," Applied Energy, Elsevier, vol. 124(C), pages 167-185.
- Zare, Shahryar & Tavakolpour-Saleh, A.R., 2020. "Predicting onset conditions of a free piston Stirling engine," Applied Energy, Elsevier, vol. 262(C).
- Yatsuzuka, Shinichi & Niiyama, Yasunori & Fukuda, Kentaro & Muramatsu, Kenshiro & Shikazono, Naoki, 2015. "Experimental and numerical evaluation of liquid-piston steam engine," Energy, Elsevier, vol. 87(C), pages 1-9.
- Markides, Christos N. & Gupta, Ajay, 2013. "Experimental investigation of a thermally powered central heating circulator: Pumping characteristics," Applied Energy, Elsevier, vol. 110(C), pages 132-146.
- Markides, Christos N. & Smith, Thomas C.B., 2011. "A dynamic model for the efficiency optimization of an oscillatory low grade heat engine," Energy, Elsevier, vol. 36(12), pages 6967-6980.
- Li, Dong-Hui & Chen, Yan-Yan & Luo, Er-Cang & Wu, Zhang-Hua, 2014. "Study of a liquid-piston traveling-wave thermoacoustic heat engine with different working gases," Energy, Elsevier, vol. 74(C), pages 158-163.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ngangué, Max Ndamé & Stouffs, Pascal, 2020. "Dynamic simulation of an original Joule cycle liquid pistons hot air Ericsson engine," Energy, Elsevier, vol. 190(C).
- Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
- Tan, Jingqi & Wei, Jianjian & Jin, Tao, 2020. "Electrical-analogy network model of a modified two-phase thermofluidic oscillator with regenerator for low-grade heat recovery," Applied Energy, Elsevier, vol. 262(C).
- Chouder, Ryma & Benabdesselam, Azzedine & Stouffs, Pascal, 2023. "Modeling results of a new high performance free liquid piston engine," Energy, Elsevier, vol. 263(PD).
- Ahmadi, Rouhollah & Jokar, H. & Motamedi, Mahmoud, 2018. "A solar pressurizable liquid piston stirling engine: Part 2, optimization and development," Energy, Elsevier, vol. 164(C), pages 1200-1215.
- Motamedi, Mahmoud & Ahmadi, Rouhollah & Jokar, H., 2018. "A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation," Energy, Elsevier, vol. 155(C), pages 796-814.
- Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
- Taleb, Aly I. & Timmer, Michael A.G. & El-Shazly, Mohamed Y. & Samoilov, Aleksandr & Kirillov, Valeriy A. & Markides, Christos N., 2016. "A single-reciprocating-piston two-phase thermofluidic prime-mover," Energy, Elsevier, vol. 104(C), pages 250-265.
- Hsu, Shu-Han & Liao, Zhe-Yi, 2024. "Impedance matching for investigating operational conditions in thermoacoustic Stirling fluidyne," Applied Energy, Elsevier, vol. 374(C).
- Langdon-Arms, Samuel & Gschwendtner, Michael & Neumaier, Martin, 2018. "A novel solar-powered liquid piston Stirling refrigerator," Applied Energy, Elsevier, vol. 229(C), pages 603-613.
- Christoph J.W. Kirmse & Oyeniyi A. Oyewunmi & Andrew J. Haslam & Christos N. Markides, 2016. "Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine," Energies, MDPI, vol. 9(7), pages 1-26, June.
- Tang, K. & Feng, Y. & Jin, S.H. & Jin, T. & Li, M., 2015. "Performance comparison of jet pumps with rectangular and circular tapered channels for a loop-structured traveling-wave thermoacoustic engine," Applied Energy, Elsevier, vol. 148(C), pages 305-313.
- Kirmse, Christoph J.W. & Oyewunmi, Oyeniyi A. & Taleb, Aly I. & Haslam, Andrew J. & Markides, Christos N., 2017. "A two-phase single-reciprocating-piston heat conversion engine: Non-linear dynamic modelling," Applied Energy, Elsevier, vol. 186(P3), pages 359-375.
- van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Tan, Jingqi & Luo, Jiaqi & Huang, Jiale & Wei, Jianjian & Jin, Tao, 2020. "A closed two-phase thermofluidic oscillator with zeotropic mixtures for low-grade heat recovery," Energy, Elsevier, vol. 211(C).
- Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
- Nikunj Gangar & Sandro Macchietto & Christos N. Markides, 2020. "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison," Energies, MDPI, vol. 13(10), pages 1-29, May.
- Markides, Christos N. & Gupta, Ajay, 2013. "Experimental investigation of a thermally powered central heating circulator: Pumping characteristics," Applied Energy, Elsevier, vol. 110(C), pages 132-146.
- Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
- Moazami Goudarzi, Hosein & Yarahmadi, Mehran & Shafii, Mohammad Behshad, 2017. "Design and construction of a two-phase fluid piston engine based on the structure of fluidyne," Energy, Elsevier, vol. 127(C), pages 660-670.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:13:y:2024:i:2:n:e509. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.