Electrical-analogy network model of a modified two-phase thermofluidic oscillator with regenerator for low-grade heat recovery
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.114539
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Meir, Avishai & Offner, Avshalom & Ramon, Guy Z., 2018. "Low-temperature energy conversion using a phase-change acoustic heat engine," Applied Energy, Elsevier, vol. 231(C), pages 372-379.
- Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2016. "Integrated chemisorption cycles for ultra-low grade heat recovery and thermo-electric energy storage and exploitation," Applied Energy, Elsevier, vol. 164(C), pages 228-236.
- Kwak, Dong-Hun & Binns, Michael & Kim, Jin-Kuk, 2014. "Integrated design and optimization of technologies for utilizing low grade heat in process industries," Applied Energy, Elsevier, vol. 131(C), pages 307-322.
- Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
- Popli, Sahil & Rodgers, Peter & Eveloy, Valerie, 2012. "Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization," Applied Energy, Elsevier, vol. 93(C), pages 624-636.
- Morgan, Robert & Dong, Guangyu & Panesar, Angad & Heikal, Morgan, 2016. "A comparative study between a Rankine cycle and a novel intra-cycle based waste heat recovery concepts applied to an internal combustion engine," Applied Energy, Elsevier, vol. 174(C), pages 108-117.
- Tsuda, Kenichiro & Ueda, Yuki, 2017. "Critical temperature of traveling- and standing-wave thermoacoustic engines using a wet regenerator," Applied Energy, Elsevier, vol. 196(C), pages 62-67.
- Kirmse, Christoph J.W. & Oyewunmi, Oyeniyi A. & Taleb, Aly I. & Haslam, Andrew J. & Markides, Christos N., 2017. "A two-phase single-reciprocating-piston heat conversion engine: Non-linear dynamic modelling," Applied Energy, Elsevier, vol. 186(P3), pages 359-375.
- Moazami Goudarzi, Hosein & Yarahmadi, Mehran & Shafii, Mohammad Behshad, 2017. "Design and construction of a two-phase fluid piston engine based on the structure of fluidyne," Energy, Elsevier, vol. 127(C), pages 660-670.
- Wu, Zhanghua & Chen, Yanyan & Dai, Wei & Luo, Ercang & Li, Donghui, 2015. "Investigation on the thermoacoustic conversion characteristic of regenerator," Applied Energy, Elsevier, vol. 152(C), pages 156-161.
- Markides, Christos N. & Osuolale, Adebayo & Solanki, Roochi & Stan, Guy-Bart V., 2013. "Nonlinear heat transfer processes in a two-phase thermofluidic oscillator," Applied Energy, Elsevier, vol. 104(C), pages 958-977.
- Markides, Christos N. & Solanki, Roochi & Galindo, Amparo, 2014. "Working fluid selection for a two-phase thermofluidic oscillator: Effect of thermodynamic properties," Applied Energy, Elsevier, vol. 124(C), pages 167-185.
- Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
- Yatsuzuka, Shinichi & Niiyama, Yasunori & Fukuda, Kentaro & Muramatsu, Kenshiro & Shikazono, Naoki, 2015. "Experimental and numerical evaluation of liquid-piston steam engine," Energy, Elsevier, vol. 87(C), pages 1-9.
- Markides, Christos N. & Gupta, Ajay, 2013. "Experimental investigation of a thermally powered central heating circulator: Pumping characteristics," Applied Energy, Elsevier, vol. 110(C), pages 132-146.
- Markides, Christos N. & Smith, Thomas C.B., 2011. "A dynamic model for the efficiency optimization of an oscillatory low grade heat engine," Energy, Elsevier, vol. 36(12), pages 6967-6980.
- Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
- Glushenkov, Maxim & Sprenkeler, Martin & Kronberg, Alexander & Kirillov, Valeriy, 2012. "Single-piston alternative to Stirling engines," Applied Energy, Elsevier, vol. 97(C), pages 743-748.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tan, Jingqi & Luo, Jiaqi & Huang, Jiale & Wei, Jianjian & Jin, Tao, 2020. "A closed two-phase thermofluidic oscillator with zeotropic mixtures for low-grade heat recovery," Energy, Elsevier, vol. 211(C).
- Wang, Kaixin & Hu, Zhan-Chao, 2023. "Experimental investigation of a novel standing-wave thermoacoustic engine based on PCHE and supercritical CO2," Energy, Elsevier, vol. 282(C).
- Sun, Haojie & Yu, Guoyao & Dai, Wei & Zhang, Limin & Luo, Ercang, 2022. "Dynamic and thermodynamic characterization of a resonance tube-coupled free-piston Stirling engine-based combined cooling and power system," Applied Energy, Elsevier, vol. 322(C).
- Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Sun, Haojie & Yu, Guoyao & Zhao, Dan & Dai, Wei & Luo, Ercang, 2023. "Thermoacoustic hysteresis of a free-piston Stirling electric generator," Energy, Elsevier, vol. 280(C).
- Chen, Geng & Wang, Yufan & Tang, Lihua & Wang, Kai & Yu, Zhibin, 2020. "Large eddy simulation of thermally induced oscillatory flow in a thermoacoustic engine," Applied Energy, Elsevier, vol. 276(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
- Nikunj Gangar & Sandro Macchietto & Christos N. Markides, 2020. "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison," Energies, MDPI, vol. 13(10), pages 1-29, May.
- van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Taleb, Aly I. & Timmer, Michael A.G. & El-Shazly, Mohamed Y. & Samoilov, Aleksandr & Kirillov, Valeriy A. & Markides, Christos N., 2016. "A single-reciprocating-piston two-phase thermofluidic prime-mover," Energy, Elsevier, vol. 104(C), pages 250-265.
- Kirmse, Christoph J.W. & Oyewunmi, Oyeniyi A. & Taleb, Aly I. & Haslam, Andrew J. & Markides, Christos N., 2017. "A two-phase single-reciprocating-piston heat conversion engine: Non-linear dynamic modelling," Applied Energy, Elsevier, vol. 186(P3), pages 359-375.
- Tan, Jingqi & Luo, Jiaqi & Huang, Jiale & Wei, Jianjian & Jin, Tao, 2020. "A closed two-phase thermofluidic oscillator with zeotropic mixtures for low-grade heat recovery," Energy, Elsevier, vol. 211(C).
- Ahmadi, Rouhollah & Jokar, H. & Motamedi, Mahmoud, 2018. "A solar pressurizable liquid piston stirling engine: Part 2, optimization and development," Energy, Elsevier, vol. 164(C), pages 1200-1215.
- Ngangué, Max Ndamé & Stouffs, Pascal, 2020. "Dynamic simulation of an original Joule cycle liquid pistons hot air Ericsson engine," Energy, Elsevier, vol. 190(C).
- Motamedi, Mahmoud & Ahmadi, Rouhollah & Jokar, H., 2018. "A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation," Energy, Elsevier, vol. 155(C), pages 796-814.
- Christoph J.W. Kirmse & Oyeniyi A. Oyewunmi & Andrew J. Haslam & Christos N. Markides, 2016. "Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine," Energies, MDPI, vol. 9(7), pages 1-26, June.
- Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
- Sindhu Preetham Burugupally & Leland Weiss, 2018. "Power Generation via Small Length Scale Thermo-Mechanical Systems: Current Status and Challenges, a Review," Energies, MDPI, vol. 11(9), pages 1-22, August.
- Pantaleo, Antonio M. & Fordham, Julia & Oyewunmi, Oyeniyi A. & De Palma, Pietro & Markides, Christos N., 2018. "Integrating cogeneration and intermittent waste-heat recovery in food processing: Microturbines vs. ORC systems in the coffee roasting industry," Applied Energy, Elsevier, vol. 225(C), pages 782-796.
- Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
- Chatzopoulou, Maria Anna & Markides, Christos N., 2018. "Thermodynamic optimisation of a high-electrical efficiency integrated internal combustion engine – Organic Rankine cycle combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 1229-1251.
- White, M.T. & Oyewunmi, O.A. & Chatzopoulou, M.A. & Pantaleo, A.M. & Haslam, A.J. & Markides, C.N., 2018. "Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery," Energy, Elsevier, vol. 161(C), pages 1181-1198.
- Tang, K. & Feng, Y. & Jin, S.H. & Jin, T. & Li, M., 2015. "Performance comparison of jet pumps with rectangular and circular tapered channels for a loop-structured traveling-wave thermoacoustic engine," Applied Energy, Elsevier, vol. 148(C), pages 305-313.
- Chouder, Ryma & Benabdesselam, Azzedine & Stouffs, Pascal, 2023. "Modeling results of a new high performance free liquid piston engine," Energy, Elsevier, vol. 263(PD).
- Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
- Yang, Rui & Wang, Junxiang & Luo, Ercang, 2023. "Revisiting the evaporative Stirling engine: The mechanism and a case study via thermoacoustic theory," Energy, Elsevier, vol. 273(C).
More about this item
Keywords
Two-phase thermofluidic oscillator; Wet thermoacoustic principle; Low-grade heat utilization; Regenerator; Resonant frequency; Onset temperature difference;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300519. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.