IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v019i02.html
   My bibliography  Save this article

Bayesian Smoothing with Gaussian Processes Using Fourier Basis Functions in the spectralGP Package

Author

Listed:
  • Paciorek, Christopher J.

Abstract

The spectral representation of stationary Gaussian processes via the Fourier basis provides a computationally efficient specification of spatial surfaces and nonparametric regression functions for use in various statistical models. I describe the representation in detail and introduce the spectralGP package in R for computations. Because of the large number of basis coefficients, some form of shrinkage is necessary; I focus on a natural Bayesian approach via a particular parameterized prior structure that approximates stationary Gaussian processes on a regular grid. I review several models from the literature for data that do not lie on a grid, suggest a simple model modification, and provide example code demonstrating MCMC sampling using the spectralGP package. I describe reasons that mixing can be slow in certain situations and provide some suggestions for MCMC techniques to improve mixing, also with example code, and some general recommendations grounded in experience.

Suggested Citation

  • Paciorek, Christopher J., 2007. "Bayesian Smoothing with Gaussian Processes Using Fourier Basis Functions in the spectralGP Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i02).
  • Handle: RePEc:jss:jstsof:v:019:i02
    DOI: http://hdl.handle.net/10.18637/jss.v019.i02
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v019i02/v19i02.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v019i02/spectralGP_1.1.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v019i02/Code.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v019.i02?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Berger J.O. & De Oliveira V. & Sanso B., 2001. "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1361-1374, December.
    2. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    3. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    4. Michael L. Stein & Zhiyi Chi & Leah J. Welty, 2004. "Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 275-296, May.
    5. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
    6. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
    7. E. E. Kammann & M. P. Wand, 2003. "Geoadditive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silas Bergen & Lianne Sheppard & Joel D. Kaufman & Adam A. Szpiro, 2016. "Multipollutant measurement error in air pollution epidemiology studies arising from predicting exposures with penalized regression splines," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 731-753, November.
    2. Sigrist, Fabio & Künsch, Hans R. & Stahel, Werner A., 2015. "spate: An R Package for Spatio-Temporal Modeling with a Stochastic Advection-Diffusion Process," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i14).
    3. Anyosa, Susan & Eidsvik, Jo & Pizarro, Oscar, 2023. "Adaptive spatial designs minimizing the integrated Bernoulli variance in spatial logistic regression models - with an application to benthic habitat mapping," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    4. repec:jss:jstsof:36:i13 is not listed on IDEAS
    5. Maitreyee Bose & James S. Hodges & Sudipto Banerjee, 2018. "Toward a diagnostic toolkit for linear models with Gaussian‐process distributed random effects," Biometrics, The International Biometric Society, vol. 74(3), pages 863-873, September.
    6. Victor De Oliveira & Zifei Han, 2023. "Approximate reference priors for Gaussian random fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 296-326, March.
    7. Thomas Kneib & Nadja Klein & Stefan Lang & Nikolaus Umlauf, 2019. "Modular regression - a Lego system for building structured additive distributional regression models with tensor product interactions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 1-39, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    2. repec:jss:jstsof:19:i02 is not listed on IDEAS
    3. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    4. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    5. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    6. Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    7. Daniel Melser, 2017. "Residential Real Estate, Risk, Return and Home Characteristics: Evidence from Sydney 2002-14," ERES eres2017_296, European Real Estate Society (ERES).
    8. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    9. Schmidt, Rouven & Kneib, Thomas, 2023. "Multivariate distributional stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    10. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
    11. Nadja Klein & Thomas Kneib & Giampiero Marra & Rosalba Radice & Slawa Rokicki & Mark E. McGovern, 2018. "Mixed Binary-Continuous Copula Regression Models with Application to Adverse Birth Outcomes," CHaRMS Working Papers 18-06, Centre for HeAlth Research at the Management School (CHaRMS).
    12. Ngo, Long & Wand, Matthew P., 2004. "Smoothing with Mixed Model Software," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i01).
    13. Philip T. Reiss & R. Todd Ogden, 2010. "Functional Generalized Linear Models with Images as Predictors," Biometrics, The International Biometric Society, vol. 66(1), pages 61-69, March.
    14. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    15. Brezger, Andreas & Kneib, Thomas & Lang, Stefan, 2005. "BayesX: Analyzing Bayesian Structural Additive Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i11).
    16. Gerhard Tutz & Jan Gertheiss, 2014. "Rating Scales as Predictors—The Old Question of Scale Level and Some Answers," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 357-376, July.
    17. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    18. Nikolaus Umlauf & Nadja Klein & Achim Zeileis, 2017. "BAMLSS: Bayesian Additive Models for Location, Scale and Shape (and Beyond)," Working Papers 2017-05, Faculty of Economics and Statistics, Universität Innsbruck.
    19. Maike Hohberg & Francesco Donat & Giampiero Marra & Thomas Kneib, 2021. "Beyond unidimensional poverty analysis using distributional copula models for mixed ordered‐continuous outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1365-1390, November.
    20. Musolesi Antonio & Mazzanti Massimiliano, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 521-541, December.
    21. Kneib, Thomas, 2006. "Mixed model-based inference in geoadditive hazard regression for interval-censored survival times," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 777-792, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:019:i02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.