IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v27y2022i4d10.1007_s13253-022-00510-5.html
   My bibliography  Save this article

On Information About Covariance Parameters in Gaussian Matérn Random Fields

Author

Listed:
  • Victor De Oliveira

    (The University of Texas at San Antonio)

  • Zifei Han

    (University of International Business and Economics)

Abstract

The Matérn family of covariance functions is currently the most commonly used for the analysis of geostatistical data due to its ability to describe different smoothness behaviors. Yet, in many applications, the smoothness parameter is set at an arbitrary value. This practice is due partly to computational challenges faced when attempting to estimate all covariance parameters and partly to unqualified claims in the literature stating that geostatistical data have little or no information about the smoothness parameter. This work critically investigates this claim and shows it is not true in general. Specifically, it is shown that the information the data have about the correlation parameters varies substantially depending on the true model and sampling design and, in particular, the information about the smoothness parameter can be large, in some cases larger than the information about the range parameter. In light of these findings, we suggest to reassess the aforementioned practice and instead establish inferences from data-based estimates of both range and smoothness parameters, especially for strongly dependent non-smooth processes observed on irregular sampling designs. A data set of daily rainfall totals is used to motivate the discussion and gauge this common practice.

Suggested Citation

  • Victor De Oliveira & Zifei Han, 2022. "On Information About Covariance Parameters in Gaussian Matérn Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 690-712, December.
  • Handle: RePEc:spr:jagbes:v:27:y:2022:i:4:d:10.1007_s13253-022-00510-5
    DOI: 10.1007/s13253-022-00510-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-022-00510-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-022-00510-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. G. Kaufman & B. A. Shaby, 2013. "The role of the range parameter for estimation and prediction in geostatistics," Biometrika, Biometrika Trust, vol. 100(2), pages 473-484.
    2. Peter Guttorp & Tilmann Gneiting, 2006. "Studies in the history of probability and statistics XLIX On the Matern correlation family," Biometrika, Biometrika Trust, vol. 93(4), pages 989-995, December.
    3. Peter Diggle & Søren Lophaven, 2006. "Bayesian Geostatistical Design," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 53-64, March.
    4. Wu, Wei-Ying & Lim, Chae Young & Xiao, Yimin, 2013. "Tail estimation of the spectral density for a stationary Gaussian random field," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 74-91.
    5. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    6. Stein, Michael L., 1993. "A simple condition for asymptotic optimality of linear predictions of random fields," Statistics & Probability Letters, Elsevier, vol. 17(5), pages 399-404, August.
    7. Bachoc, François, 2014. "Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 1-35.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    2. Hong, Yiping & Zhou, Zaiying & Yang, Ying, 2020. "Hypothesis testing for the smoothness parameter of Matérn covariance model on a regular grid," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    3. Bachoc, François & Lagnoux, Agnès & Nguyen, Thi Mong Ngoc, 2017. "Cross-validation estimation of covariance parameters under fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 42-67.
    4. Wenpin Tang & Lu Zhang & Sudipto Banerjee, 2021. "On identifiability and consistency of the nugget in Gaussian spatial process models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1044-1070, November.
    5. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    7. Ghulam A. Qadir & Ying Sun, 2021. "Semiparametric estimation of cross‐covariance functions for multivariate random fields," Biometrics, The International Biometric Society, vol. 77(2), pages 547-560, June.
    8. Qian Ren & Sudipto Banerjee, 2013. "Hierarchical Factor Models for Large Spatially Misaligned Data: A Low-Rank Predictive Process Approach," Biometrics, The International Biometric Society, vol. 69(1), pages 19-30, March.
    9. Keshavarz, Hossein & Scott, Clayton & Nguyen, XuanLong, 2016. "On the consistency of inversion-free parameter estimation for Gaussian random fields," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 245-266.
    10. Guinness, Joseph & Fuentes, Montserrat, 2016. "Isotropic covariance functions on spheres: Some properties and modeling considerations," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 143-152.
    11. Arafat, Ahmed & Porcu, Emilio & Bevilacqua, Moreno & Mateu, Jorge, 2018. "Equivalence and orthogonality of Gaussian measures on spheres," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 306-318.
    12. Lim, Chae Young & Chen, Chien-Hung & Wu, Wei-Ying, 2017. "Numerical instability of calculating inverse of spatial covariance matrices," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 182-188.
    13. Bachoc, François & Bevilacqua, Moreno & Velandia, Daira, 2019. "Composite likelihood estimation for a Gaussian process under fixed domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    14. Ip, Ryan H.L. & Li, W.K., 2017. "A class of valid Matérn cross-covariance functions for multivariate spatio-temporal random fields," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 115-119.
    15. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    16. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    17. Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
    18. Lu, Zudi & Tjostheim, Dag & Yao, Qiwei, 2008. "Spatial smoothing, Nugget effect and infill asymptotics," LSE Research Online Documents on Economics 24133, London School of Economics and Political Science, LSE Library.
    19. François Bachoc & Marc G Genton & Klaus Nordhausen & Anne Ruiz-Gazen & Joni Virta, 2020. "Spatial blind source separation," Biometrika, Biometrika Trust, vol. 107(3), pages 627-646.
    20. Eric Yanchenko & Howard D. Bondell & Brian J. Reich, 2024. "Spatial regression modeling via the R2D2 framework," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:27:y:2022:i:4:d:10.1007_s13253-022-00510-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.