IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v47y2020i4p1377-1400.html
   My bibliography  Save this article

Pseudo likelihood‐based estimation and testing of missingness mechanism function in nonignorable missing data problems

Author

Listed:
  • Xuerong Chen
  • Guoqing Diao
  • Jing Qin

Abstract

In nonignorable missing response problems, we study a semiparametric model with unspecified missingness mechanism model and a exponential family model for response conditional density. Even though existing methods are available to estimate the parameters in exponential family, estimation or testing of the missingness mechanism model nonparametrically remains to be an open problem. By defining a “synthesis" density involving the unknown missingness mechanism model and the known baseline “carrier" density in the exponential family model, we treat this “synthesis" density as a legitimate one with biased sampling version. We develop maximum pseudo likelihood estimation procedures and the resultant estimators are consistent and asymptotically normal. Since the “synthesis" cumulative distribution is a functional of the missingness mechanism model and the known carrier density, proposed method can be used to test the correctness of the missingness mechanism model nonparametrically andindirectly. Simulation studies and real example demonstrate the proposed methods perform very well.

Suggested Citation

  • Xuerong Chen & Guoqing Diao & Jing Qin, 2020. "Pseudo likelihood‐based estimation and testing of missingness mechanism function in nonignorable missing data problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1377-1400, December.
  • Handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1377-1400
    DOI: 10.1111/sjos.12493
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12493
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kani Chen, 2001. "Parametric models for response‐biased sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 775-789.
    2. Wu C. & Sitter R. R, 2001. "A Model-Calibration Approach to Using Complete Auxiliary Information From Survey Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 185-193, March.
    3. Yang, Ying & Kang, Jian, 2010. "Joint analysis of mixed Poisson and continuous longitudinal data with nonignorable missing values," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 193-207, January.
    4. Gong Tang, 2003. "Analysis of multivariate missing data with nonignorable nonresponse," Biometrika, Biometrika Trust, vol. 90(4), pages 747-764, December.
    5. Jolene Birmingham & Andrea Rotnitzky & Garrett M. Fitzmaurice, 2003. "Pattern–mixture and selection models for analysing longitudinal data with monotone missing patterns," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 275-297, February.
    6. Jiwei Zhao & Jun Shao, 2015. "Semiparametric Pseudo-Likelihoods in Generalized Linear Models With Nonignorable Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1577-1590, December.
    7. Stuart R. Lipsitz & Lue Ping Zhao & Geert Molenberghs, 1998. "A semiparametric method of multiple imputation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 127-144.
    8. Xuerong Chen & Alan T. K. Wan & Yong Zhou, 2015. "Efficient Quantile Regression Analysis With Missing Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 723-741, June.
    9. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    10. Kim, Jae Kwang & Yu, Cindy Long, 2011. "A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 157-165.
    11. Wang Miao & Peng Ding & Zhi Geng, 2016. "Identifiability of Normal and Normal Mixture Models with Nonignorable Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1673-1683, October.
    12. Kung‐Yee Liang & Jing Qin, 2000. "Regression analysis under non‐standard situations: a pairwise pseudolikelihood approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 773-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majid Mojirsheibani, 2022. "On the maximal deviation of kernel regression estimators with NMAR response variables," Statistical Papers, Springer, vol. 63(5), pages 1677-1705, October.
    2. Bian, Yuan & Yi, Grace Y. & He, Wenqing, 2024. "A unified framework of analyzing missing data and variable selection using regularized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiwei Zhao, 2017. "Reducing bias for maximum approximate conditional likelihood estimator with general missing data mechanism," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 577-593, July.
    2. Aiai Yu & Yujie Zhong & Xingdong Feng & Ying Wei, 2023. "Quantile regression for nonignorable missing data with its application of analyzing electronic medical records," Biometrics, The International Biometric Society, vol. 79(3), pages 2036-2049, September.
    3. Li, Mengyan & Ma, Yanyuan & Zhao, Jiwei, 2022. "Efficient estimation in a partially specified nonignorable propensity score model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    4. Cui, Xia & Guo, Jianhua & Yang, Guangren, 2017. "On the identifiability and estimation of generalized linear models with parametric nonignorable missing data mechanism," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 64-80.
    5. Liu, Tianqing & Yuan, Xiaohui & Sun, Jianguo, 2021. "Weighted rank estimation for nonparametric transformation models with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    6. Pengfei Li & Jing Qin & Yukun Liu, 2023. "Instability of inverse probability weighting methods and a remedy for nonignorable missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3215-3226, December.
    7. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    8. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
    9. Morikawa, Kosuke & Kano, Yutaka, 2018. "Identification problem of transition models for repeated measurement data with nonignorable missing values," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 216-230.
    10. Breunig, Christoph, 2017. "Testing Missing At Random Using Instrumental Variables," Rationality and Competition Discussion Paper Series 59, CRC TRR 190 Rationality and Competition.
    11. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    12. Puying Zhao & Hui Zhao & Niansheng Tang & Zhaohai Li, 2017. "Weighted composite quantile regression analysis for nonignorable missing data using nonresponse instrument," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 189-212, April.
    13. Zhong Guan & Jing Qin, 2017. "Empirical likelihood method for non-ignorable missing data problems," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 113-135, January.
    14. Bindele, Huybrechts F. & Nguelifack, Brice M., 2019. "Generalized signed-rank estimation for regression models with non-ignorable missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 14-33.
    15. Shonosuke Sugasawa & Kosuke Morikawa & Keisuke Takahata, 2022. "Bayesian semiparametric modeling of response mechanism for nonignorable missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 101-117, March.
    16. Tianqing Liu & Xiaohui Yuan, 2020. "Doubly robust augmented-estimating-equations estimation with nonignorable nonresponse data," Statistical Papers, Springer, vol. 61(6), pages 2241-2270, December.
    17. Ji Chen & Jun Shao & Fang Fang, 2021. "Instrument search in pseudo-likelihood approach for nonignorable nonresponse," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 519-533, June.
    18. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    19. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    20. Zhou, Jing & Lan, Wei & Wang, Hansheng, 2022. "Asymptotic covariance estimation by Gaussian random perturbation," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1377-1400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.