IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v60y1998i1p127-144.html
   My bibliography  Save this article

A semiparametric method of multiple imputation

Author

Listed:
  • Stuart R. Lipsitz
  • Lue Ping Zhao
  • Geert Molenberghs

Abstract

In this paper, we describe how to use multiple imputation semiparametrically to obtain estimates of parameters and their standard errors when some individuals have missing data. The methods given require the investigator to know or be able to estimate the process generating the missing data but requires no full distributional form for the data. The method is especially useful for non‐standard problems, such as estimating the median when data are missing.

Suggested Citation

  • Stuart R. Lipsitz & Lue Ping Zhao & Geert Molenberghs, 1998. "A semiparametric method of multiple imputation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 127-144.
  • Handle: RePEc:bla:jorssb:v:60:y:1998:i:1:p:127-144
    DOI: 10.1111/1467-9868.00113
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00113
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuerong Chen & Guoqing Diao & Jing Qin, 2020. "Pseudo likelihood‐based estimation and testing of missingness mechanism function in nonignorable missing data problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1377-1400, December.
    2. Qihua Wang & Gregg Dinse & Chunling Liu, 2012. "Hazard function estimation with cause-of-death data missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 415-438, April.
    3. Marco Di Zio & Ugo Guarnera, 2008. "A multiple imputation method for non-Gaussian data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 75-90.
    4. Shuanghua Luo & Changlin Mei & Cheng-yi Zhang, 2017. "Smoothed empirical likelihood for quantile regression models with response data missing at random," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 95-116, January.
    5. Xuerong Chen & Alan T. K. Wan & Yong Zhou, 2015. "Efficient Quantile Regression Analysis With Missing Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 723-741, June.
    6. Shuanghua Luo & Yuxin Yan & Cheng-yi Zhang, 2024. "Two-Stage Estimation of Partially Linear Varying Coefficient Quantile Regression Model with Missing Data," Mathematics, MDPI, vol. 12(4), pages 1-15, February.
    7. Aiai Yu & Yujie Zhong & Xingdong Feng & Ying Wei, 2023. "Quantile regression for nonignorable missing data with its application of analyzing electronic medical records," Biometrics, The International Biometric Society, vol. 79(3), pages 2036-2049, September.
    8. Gabriele Beissel Durrant, 2009. "Imputation Methods for Handling Item-Nonresponse in the Social Sciences: A Methodological Review," Working Papers id:2007, eSocialSciences.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:60:y:1998:i:1:p:127-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.