IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v29y2017i3p577-593.html
   My bibliography  Save this article

Reducing bias for maximum approximate conditional likelihood estimator with general missing data mechanism

Author

Listed:
  • Jiwei Zhao

Abstract

In missing data analysis, the assumption of the missing data mechanism is crucial. Under different assumptions, different statistical methods have to be developed accordingly; however, in reality this kind of assumption is usually unverifiable. Therefore a less stringent, and hence more flexible, assumption is preferred. In this paper, we consider a generally applicable missing data mechanism. Under this general missing data mechanism, we introduce the conditional likelihood and its approximate version as the base for estimating the unknown parameter of interest. Since this approximate conditional likelihood uses the completely observed samples only, it may result in large estimation bias, which could deteriorate the statistical inference and also jeopardise other statistical procedure. To tackle this problem, we propose to use some resampling techniques to reduce the estimation bias. We consider both the Jackknife and the Bootstrap in our paper. We compare their asymptotic biases through a higher order expansion up to $ O(n^{-1}) $ O(n−1). We also derive some results for the mean squared error (MSE) in terms of estimation accuracy. We conduct comprehensive simulation studies under different situations to illustrate our proposed method. We also apply our method to a prostate cancer data analysis.

Suggested Citation

  • Jiwei Zhao, 2017. "Reducing bias for maximum approximate conditional likelihood estimator with general missing data mechanism," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 577-593, July.
  • Handle: RePEc:taf:gnstxx:v:29:y:2017:i:3:p:577-593
    DOI: 10.1080/10485252.2017.1339306
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2017.1339306
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2017.1339306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sooryanarayana Varambally & Saravana M. Dhanasekaran & Ming Zhou & Terrence R. Barrette & Chandan Kumar-Sinha & Martin G. Sanda & Debashis Ghosh & Kenneth J. Pienta & Richard G. A. B. Sewalt & Arie P., 2002. "The polycomb group protein EZH2 is involved in progression of prostate cancer," Nature, Nature, vol. 419(6907), pages 624-629, October.
    2. Kim, Jae Kwang & Yu, Cindy Long, 2011. "A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 157-165.
    3. Gong Tang, 2003. "Analysis of multivariate missing data with nonignorable nonresponse," Biometrika, Biometrika Trust, vol. 90(4), pages 747-764, December.
    4. Jiwei Zhao & Jun Shao, 2015. "Semiparametric Pseudo-Likelihoods in Generalized Linear Models With Nonignorable Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1577-1590, December.
    5. Kung‐Yee Liang & Jing Qin, 2000. "Regression analysis under non‐standard situations: a pairwise pseudolikelihood approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 773-786.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tianqing & Yuan, Xiaohui & Sun, Jianguo, 2021. "Weighted rank estimation for nonparametric transformation models with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    2. Xuerong Chen & Guoqing Diao & Jing Qin, 2020. "Pseudo likelihood‐based estimation and testing of missingness mechanism function in nonignorable missing data problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1377-1400, December.
    3. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    4. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
    5. Li, Mengyan & Ma, Yanyuan & Zhao, Jiwei, 2022. "Efficient estimation in a partially specified nonignorable propensity score model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    6. Breunig, Christoph, 2017. "Testing Missing At Random Using Instrumental Variables," Rationality and Competition Discussion Paper Series 59, CRC TRR 190 Rationality and Competition.
    7. Cui, Xia & Guo, Jianhua & Yang, Guangren, 2017. "On the identifiability and estimation of generalized linear models with parametric nonignorable missing data mechanism," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 64-80.
    8. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    9. Puying Zhao & Hui Zhao & Niansheng Tang & Zhaohai Li, 2017. "Weighted composite quantile regression analysis for nonignorable missing data using nonresponse instrument," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 189-212, April.
    10. Zhong Guan & Jing Qin, 2017. "Empirical likelihood method for non-ignorable missing data problems," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 113-135, January.
    11. Shonosuke Sugasawa & Kosuke Morikawa & Keisuke Takahata, 2022. "Bayesian semiparametric modeling of response mechanism for nonignorable missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 101-117, March.
    12. Pengfei Li & Jing Qin & Yukun Liu, 2023. "Instability of inverse probability weighting methods and a remedy for nonignorable missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3215-3226, December.
    13. Tianqing Liu & Xiaohui Yuan, 2020. "Doubly robust augmented-estimating-equations estimation with nonignorable nonresponse data," Statistical Papers, Springer, vol. 61(6), pages 2241-2270, December.
    14. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    15. Christoph Breunig & Stephan Martin, 2020. "Nonclassical Measurement Error in the Outcome Variable," Papers 2009.12665, arXiv.org, revised May 2021.
    16. Aiai Yu & Yujie Zhong & Xingdong Feng & Ying Wei, 2023. "Quantile regression for nonignorable missing data with its application of analyzing electronic medical records," Biometrics, The International Biometric Society, vol. 79(3), pages 2036-2049, September.
    17. Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Oct 2020.
    18. Breunig, Christoph & Kummer, Michael & Ohnemus, Jörg & Viete, Steffen, 2016. "IT outsourcing and firm productivity: Eliminating bias from selective missingness in the dependent variable," ZEW Discussion Papers 16-092, ZEW - Leibniz Centre for European Economic Research.
    19. Kano, Yutaka & Takai, Keiji, 2011. "Analysis of NMAR missing data without specifying missing-data mechanisms in a linear latent variate model," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1241-1255, October.
    20. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:29:y:2017:i:3:p:577-593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.