IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v47y2020i4p1222-1242.html
   My bibliography  Save this article

Stratified proportional subdistribution hazards model with covariate‐adjusted censoring weight for case‐cohort studies

Author

Listed:
  • Soyoung Kim
  • Yayun Xu
  • Mei‐Jie Zhang
  • Kwang‐Woo Ahn

Abstract

The case‐cohort study design is widely used to reduce cost when collecting expensive covariates in large cohort studies with survival or competing risks outcomes. A case‐cohort study dataset consists of two parts: (a) a random sample and (b) all cases or failures from a specific cause of interest. Clinicians often assess covariate effects on competing risks outcomes. The proportional subdistribution hazards model directly evaluates the effect of a covariate on the cumulative incidence function under the non‐covariate‐dependent censoring assumption for the full cohort study. However, the non‐covariate‐dependent censoring assumption is often violated in many biomedical studies. In this article, we propose a proportional subdistribution hazards model for case‐cohort studies with stratified data with covariate‐adjusted censoring weight. We further propose an efficient estimator when extra information from the other causes is available under case‐cohort studies. The proposed estimators are shown to be consistent and asymptotically normal. Simulation studies show (a) the proposed estimator is unbiased when the censoring distribution depends on covariates and (b) the proposed efficient estimator gains estimation efficiency when using extra information from the other causes. We analyze a bone marrow transplant dataset and a coronary heart disease dataset using the proposed method.

Suggested Citation

  • Soyoung Kim & Yayun Xu & Mei‐Jie Zhang & Kwang‐Woo Ahn, 2020. "Stratified proportional subdistribution hazards model with covariate‐adjusted censoring weight for case‐cohort studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1222-1242, December.
  • Handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1222-1242
    DOI: 10.1111/sjos.12461
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12461
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Soyoung Kim & Donglin Zeng & Jianwen Cai, 2018. "Analysis of multiple survival events in generalized case‐cohort designs," Biometrics, The International Biometric Society, vol. 74(4), pages 1250-1260, December.
    2. Peng He & Frank Eriksson & Thomas H. Scheike & Mei-Jie Zhang, 2016. "A Proportional Hazards Regression Model for the Subdistribution with Covariates-adjusted Censoring Weight for Competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 103-122, March.
    3. Norman E. Breslow & Jon A. Wellner, 2007. "Weighted Likelihood for Semiparametric Models and Two‐phase Stratified Samples, with Application to Cox Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 86-102, March.
    4. Ronald B. Geskus, 2011. "Cause-Specific Cumulative Incidence Estimation and the Fine and Gray Model Under Both Left Truncation and Right Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 39-49, March.
    5. Michal Kulich & D.Y. Lin, 2004. "Improving the Efficiency of Relative-Risk Estimation in Case-Cohort Studies," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 832-844, January.
    6. Thomas H. Scheike & Mei-Jie Zhang & Thomas A. Gerds, 2008. "Predicting cumulative incidence probability by direct binomial regression," Biometrika, Biometrika Trust, vol. 95(1), pages 205-220.
    7. Lu Mao & D. Y. Lin, 2017. "Efficient estimation of semiparametric transformation models for the cumulative incidence of competing risks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 573-587, March.
    8. Bingqing Zhou & Aurelien Latouche & Vanderson Rocha & Jason Fine, 2011. "Competing Risks Regression for Stratified Data," Biometrics, The International Biometric Society, vol. 67(2), pages 661-670, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adane F. Wogu & Haolin Li & Shanshan Zhao & Hazel B. Nichols & Jianwen Cai, 2023. "Additive subdistribution hazards regression for competing risks data in case‐cohort studies," Biometrics, The International Biometric Society, vol. 79(4), pages 3010-3022, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yayun Xu & Soyoung Kim & Mei-Jie Zhang & David Couper & Kwang Woo Ahn, 2022. "Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 241-262, April.
    2. Adane F. Wogu & Haolin Li & Shanshan Zhao & Hazel B. Nichols & Jianwen Cai, 2023. "Additive subdistribution hazards regression for competing risks data in case‐cohort studies," Biometrics, The International Biometric Society, vol. 79(4), pages 3010-3022, December.
    3. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    4. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    5. Yanqing Sun & Xiyuan Qian & Qiong Shou & Peter B. Gilbert, 2017. "Analysis of two-phase sampling data with semiparametric additive hazards models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 377-399, July.
    6. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2023. "Regression models for censored time-to-event data using infinitesimal jack-knife pseudo-observations, with applications to left-truncation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 654-671, July.
    7. Yuxue Jin & Tze Leung Lai, 2017. "A new approach to regression analysis of censored competing-risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 605-625, October.
    8. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
    9. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Feature screening for case‐cohort studies with failure time outcome," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 349-370, March.
    10. Li, Ruosha & Peng, Limin, 2014. "Varying coefficient subdistribution regression for left-truncated semi-competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 65-78.
    11. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    12. Ying Yan & Haibo Zhou & Jianwen Cai, 2017. "Improving efficiency of parameter estimation in case-cohort studies with multivariate failure time data," Biometrics, The International Biometric Society, vol. 73(3), pages 1042-1052, September.
    13. Zhiguo Li & Peter Gilbert & Bin Nan, 2008. "Weighted Likelihood Method for Grouped Survival Data in Case–Cohort Studies with Application to HIV Vaccine Trials," Biometrics, The International Biometric Society, vol. 64(4), pages 1247-1255, December.
    14. Patrice Bertail & Emilie Chautru & Stephan Clémençon, 2017. "Empirical Processes in Survey Sampling with (Conditional) Poisson Designs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 97-111, March.
    15. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    16. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    17. Michael J. Martens & Brent R. Logan, 2018. "A group sequential test for treatment effect based on the Fine–Gray model," Biometrics, The International Biometric Society, vol. 74(3), pages 1006-1013, September.
    18. Carlos Forero & Josué Almansa & Núria Adroher & Jeroen Vermunt & Gemma Vilagut & Ron Graaf & Josep-Maria Haro & Jordi Alonso Caballero, 2014. "Partial Likelihood Estimation of IRT Models with Censored Lifetime Data: An Application to Mental Disorders in the ESEMeD Surveys," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 470-488, July.
    19. Zhixuan Fu & Shuangge Ma & Haiqun Lin & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized Variable Selection for Multi-center Competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 379-405, December.
    20. Soyoung Kim & Donglin Zeng & Jianwen Cai, 2018. "Analysis of multiple survival events in generalized case‐cohort designs," Biometrics, The International Biometric Society, vol. 74(4), pages 1250-1260, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1222-1242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.