IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i3p1006-1013.html
   My bibliography  Save this article

A group sequential test for treatment effect based on the Fine–Gray model

Author

Listed:
  • Michael J. Martens
  • Brent R. Logan

Abstract

Competing risks endpoints arise when patients can fail therapy from several causes. Analyzing these outcomes allows one to assess directly the benefit of treatment on a primary cause of failure in a clinical trial setting. Regression models can be used in clinical trials to adjust for residual imbalances in patient characteristics, improving the power to detect treatment differences. But, none of the competing risks methods currently available for use in group sequential trials adjust for covariates. We propose a group sequential test for treatment effect that, because it is based on the Fine–Gray model, permits adjustment for covariates. Our derivations show that its sequence of test statistics has an asymptotic distribution with an independent increments structure, which allows standard techniques such as O'Brien–Fleming designs and error spending functions to be employed to meet type I error rate and power specifications. We demonstrate the test in a reanalysis of BMT CTN 0402, a phase III clinical trial that evaluated an experimental treatment for the prevention of adverse outcomes following blood and marrow transplant. Moreover, using a simulation study of randomized group sequential trials, we demonstrate that the proposed method preserves the type I error rate and power at their nominal levels in the presence of influential covariates.

Suggested Citation

  • Michael J. Martens & Brent R. Logan, 2018. "A group sequential test for treatment effect based on the Fine–Gray model," Biometrics, The International Biometric Society, vol. 74(3), pages 1006-1013, September.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:1006-1013
    DOI: 10.1111/biom.12871
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12871
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng He & Frank Eriksson & Thomas H. Scheike & Mei-Jie Zhang, 2016. "A Proportional Hazards Regression Model for the Subdistribution with Covariates-adjusted Censoring Weight for Competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 103-122, March.
    2. John P. Klein & Per Kragh Andersen, 2005. "Regression Modeling of Competing Risks Data Based on Pseudovalues of the Cumulative Incidence Function," Biometrics, The International Biometric Society, vol. 61(1), pages 223-229, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael J. Martens & Brent R. Logan, 2020. "Group sequential tests for treatment effect on survival and cumulative incidence at a fixed time point," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 603-623, July.
    2. Michael J. Martens & Soyoung Kim & Kwang Woo Ahn, 2023. "Sample size and power determination for multiparameter evaluation in nonlinear regression models with potential stratification," Biometrics, The International Biometric Society, vol. 79(4), pages 3916-3928, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adane F. Wogu & Haolin Li & Shanshan Zhao & Hazel B. Nichols & Jianwen Cai, 2023. "Additive subdistribution hazards regression for competing risks data in case‐cohort studies," Biometrics, The International Biometric Society, vol. 79(4), pages 3010-3022, December.
    2. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    3. Lee, Unkyung & Sun, Yanqing & Scheike, Thomas H. & Gilbert, Peter B., 2018. "Analysis of generalized semiparametric regression models for cumulative incidence functions with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 59-79.
    4. Yosra Yousif & Faiz Elfaki & Meftah Hrairi & Oyelola Adegboye, 2022. "Bayesian Analysis of Masked Competing Risks Data Based on Proportional Subdistribution Hazards Model," Mathematics, MDPI, vol. 10(17), pages 1-10, August.
    5. Li, Ruosha & Peng, Limin, 2014. "Varying coefficient subdistribution regression for left-truncated semi-competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 65-78.
    6. Gang Li & Qing Yang, 2016. "Joint Inference for Competing Risks Survival Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1289-1300, July.
    7. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    8. Brent R. Logan & John P. Klein & Mei‐Jie Zhang, 2008. "Comparing Treatments in the Presence of Crossing Survival Curves: An Application to Bone Marrow Transplantation," Biometrics, The International Biometric Society, vol. 64(3), pages 733-740, September.
    9. Su, Pei-Fang & Chi, Yunchan & Li, Chung-I & Shyr, Yu & Liao, Yi-De, 2011. "Analyzing survival curves at a fixed point in time for paired and clustered right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1617-1628, April.
    10. Klemen Pavlič & Torben Martinussen & Per Kragh Andersen, 2019. "Goodness of fit tests for estimating equations based on pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 189-205, April.
    11. Yayuan Zhu & Jingjing Wu & Xuewen Lu, 2013. "Minimum Hellinger distance estimation for a two-sample semiparametric cure rate model with censored survival data," Computational Statistics, Springer, vol. 28(6), pages 2495-2518, December.
    12. Ambrogi, Federico & Biganzoli, Elia & Boracchi, Patrizia, 2009. "Estimating crude cumulative incidences through multinomial logit regression on discrete cause-specific hazards," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2767-2779, May.
    13. Hao, Meiling & Zhao, Xingqiu & Xu, Wei, 2020. "Competing risk modeling and testing for X-chromosome genetic association," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    14. Frank Eriksson & Thomas Scheike, 2015. "Additive gamma frailty models with applications to competing risks in related individuals," Biometrics, The International Biometric Society, vol. 71(3), pages 677-686, September.
    15. Soyoung Kim & Yayun Xu & Mei‐Jie Zhang & Kwang‐Woo Ahn, 2020. "Stratified proportional subdistribution hazards model with covariate‐adjusted censoring weight for case‐cohort studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1222-1242, December.
    16. Yayun Xu & Soyoung Kim & Mei-Jie Zhang & David Couper & Kwang Woo Ahn, 2022. "Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 241-262, April.
    17. Xu Zhang & Haci Akcin & Hyun Lim, 2011. "Regression analysis of competing risks data via semi-parametric additive hazard model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(3), pages 357-381, August.
    18. Zijing Yang & Chengfeng Zhang & Yawen Hou & Zheng Chen, 2023. "Analysis of dynamic restricted mean survival time based on pseudo‐observations," Biometrics, The International Biometric Society, vol. 79(4), pages 3690-3700, December.
    19. He, Yizeng & Kim, Soyoung & Kim, Mi-Ok & Saber, Wael & Ahn, Kwang Woo, 2021. "Optimal treatment regimes for competing risk data using doubly robust outcome weighted learning with bi-level variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    20. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:1006-1013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.