IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v26y2020i4d10.1007_s10985-020-09492-3.html
   My bibliography  Save this article

Cumulative risk regression in case–cohort studies using pseudo-observations

Author

Listed:
  • Erik T. Parner

    (Aarhus University)

  • Per K. Andersen

    (University of Copenhagen)

  • Morten Overgaard

    (Aarhus University)

Abstract

Case–cohort studies are useful when information on certain risk factors is difficult or costly to ascertain. Particularly, a case–cohort study may be well suited in situations where several case series are of interest, e.g. in studies with competing risks, because the same sub-cohort may serve as a comparison group for all case series. Previous analyses of this kind of sampled cohort data most often involved estimation of rate ratios based on a Cox regression model. However, with competing risks this method will not provide parameters that directly describe the association between covariates and cumulative risks. In this paper, we study regression analysis of cause-specific cumulative risks in case–cohort studies using pseudo-observations. We focus mainly on the situation with competing risks. However, as a by-product, we also develop a method by which absolute mortality risks may be analyzed directly from case–cohort survival data. We adjust for the case–cohort sampling by inverse sampling probabilities applied to a generalized estimation equation. The large-sample properties of the proposed estimator are developed and small-sample properties are evaluated in a simulation study. We apply the methodology to study the effect of a specific diet component and a specific gene on the absolute risk of atrial fibrillation.

Suggested Citation

  • Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
  • Handle: RePEc:spr:lifeda:v:26:y:2020:i:4:d:10.1007_s10985-020-09492-3
    DOI: 10.1007/s10985-020-09492-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-020-09492-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-020-09492-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John P. Klein & Per Kragh Andersen, 2005. "Regression Modeling of Competing Risks Data Based on Pseudovalues of the Cumulative Incidence Function," Biometrics, The International Biometric Society, vol. 61(1), pages 223-229, March.
    2. Jianwen Cai & Donglin Zeng, 2007. "Power Calculation for Case–Cohort Studies with Nonrare Events," Biometrics, The International Biometric Society, vol. 63(4), pages 1288-1295, December.
    3. Michal Kulich & D.Y. Lin, 2004. "Improving the Efficiency of Relative-Risk Estimation in Case-Cohort Studies," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 832-844, January.
    4. Morten Overgaard & Erik Thorlund Parner & Jan Pedersen, 2018. "Estimating the variance in a pseudo‐observation scheme with competing risks," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(4), pages 923-940, December.
    5. Thomas H. Scheike & Mei-Jie Zhang & Thomas A. Gerds, 2008. "Predicting cumulative incidence probability by direct binomial regression," Biometrika, Biometrika Trust, vol. 95(1), pages 205-220.
    6. Langholz, Bryan & Jiao, Jenny, 2007. "Computational methods for case-cohort studies," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3737-3748, May.
    7. Zhang, Haimeng & Goldstein, Larry, 2003. "Information and asymptotic efficiency of the case-cohort sampling design in Cox's regression model," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 292-317, May.
    8. S. Kang & J. Cai, 2009. "Marginal hazards model for case-cohort studies with multiple disease outcomes," Biometrika, Biometrika Trust, vol. 96(4), pages 887-901.
    9. Per Kragh Andersen, 2003. "Generalised linear models for correlated pseudo-observations, with applications to multi-state models," Biometrika, Biometrika Trust, vol. 90(1), pages 15-27, March.
    10. Martin Jacobsen & Torben Martinussen, 2016. "A Note on the Large Sample Properties of Estimators Based on Generalized Linear Models for Correlated Pseudo-observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 845-862, September.
    11. Kani Chen, 2001. "Generalized case–cohort sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 791-809.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yayun Xu & Soyoung Kim & Mei-Jie Zhang & David Couper & Kwang Woo Ahn, 2022. "Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 241-262, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yayun Xu & Soyoung Kim & Mei-Jie Zhang & David Couper & Kwang Woo Ahn, 2022. "Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 241-262, April.
    2. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2023. "Regression models for censored time-to-event data using infinitesimal jack-knife pseudo-observations, with applications to left-truncation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 654-671, July.
    3. Soyoung Kim & Donglin Zeng & Jianwen Cai, 2018. "Analysis of multiple survival events in generalized case‐cohort designs," Biometrics, The International Biometric Society, vol. 74(4), pages 1250-1260, December.
    4. Alina Schenk & Moritz Berger & Matthias Schmid, 2024. "Pseudo-value regression trees," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 439-471, April.
    5. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
    6. Lee, Unkyung & Sun, Yanqing & Scheike, Thomas H. & Gilbert, Peter B., 2018. "Analysis of generalized semiparametric regression models for cumulative incidence functions with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 59-79.
    7. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    8. Klemen Pavlič & Torben Martinussen & Per Kragh Andersen, 2019. "Goodness of fit tests for estimating equations based on pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 189-205, April.
    9. Ying Yan & Haibo Zhou & Jianwen Cai, 2017. "Improving efficiency of parameter estimation in case-cohort studies with multivariate failure time data," Biometrics, The International Biometric Society, vol. 73(3), pages 1042-1052, September.
    10. Jichang Yu & Haibo Zhou & Jianwen Cai, 2021. "Accelerated failure time model for data from outcome-dependent sampling," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 15-37, January.
    11. Yanzhi Wang & Brent R. Logan, 2019. "Testing for center effects on survival and competing risks outcomes using pseudo-value regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 206-228, April.
    12. Poulami Maitra & Leila D. A. F. Amorim & Jianwen Cai, 2020. "Multiplicative rates model for recurrent events in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 134-157, January.
    13. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    14. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    15. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    16. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    17. Yichen Lou & Peijie Wang & Jianguo Sun, 2023. "A semi-parametric weighted likelihood approach for regression analysis of bivariate interval-censored outcomes from case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 628-653, July.
    18. Su, Pei-Fang & Chi, Yunchan & Li, Chung-I & Shyr, Yu & Liao, Yi-De, 2011. "Analyzing survival curves at a fixed point in time for paired and clustered right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1617-1628, April.
    19. Yanqing Sun & Xiyuan Qian & Qiong Shou & Peter B. Gilbert, 2017. "Analysis of two-phase sampling data with semiparametric additive hazards models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 377-399, July.
    20. Soyoung Kim & Yayun Xu & Mei‐Jie Zhang & Kwang‐Woo Ahn, 2020. "Stratified proportional subdistribution hazards model with covariate‐adjusted censoring weight for case‐cohort studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1222-1242, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:26:y:2020:i:4:d:10.1007_s10985-020-09492-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.