IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v79y2014i3p470-488.html
   My bibliography  Save this article

Partial Likelihood Estimation of IRT Models with Censored Lifetime Data: An Application to Mental Disorders in the ESEMeD Surveys

Author

Listed:
  • Carlos Forero
  • Josué Almansa
  • Núria Adroher
  • Jeroen Vermunt
  • Gemma Vilagut
  • Ron Graaf
  • Josep-Maria Haro
  • Jordi Alonso Caballero

Abstract

Developmental studies of mental disorders based on epidemiological data are often based on cross-sectional retrospective surveys. Under such designs, observations are right-censored, causing underestimation of lifetime prevalences and correlations, and inducing bias in latent trait models on the observations. In this paper we propose a Partial Likelihood (PL) method to estimate unbiased IRT models of lifetime predisposition to develop a certain outcome. A two-step estimation procedure corrects the IRT likelihood of outcome appearance with a function depending on (a) projected outcome frequencies at the end of the risk period, and (b) outcome censoring status at the time of the observation. Simulation results showed that the PL method yielded good recovery of true frequencies and intercepts. Slopes were best estimated when events were sufficiently correlated. When PL is applied to lifetime mental health disorders (assessed in the ESEMeD project surveys), estimated univariate prevalences were, on average, 1.4 times above raw estimates, and 2.06 higher in the case of bivariate prevalences. Copyright The Psychometric Society 2014

Suggested Citation

  • Carlos Forero & Josué Almansa & Núria Adroher & Jeroen Vermunt & Gemma Vilagut & Ron Graaf & Josep-Maria Haro & Jordi Alonso Caballero, 2014. "Partial Likelihood Estimation of IRT Models with Censored Lifetime Data: An Application to Mental Disorders in the ESEMeD Surveys," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 470-488, July.
  • Handle: RePEc:spr:psycho:v:79:y:2014:i:3:p:470-488
    DOI: 10.1007/s11336-013-9400-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-013-9400-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-013-9400-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeroen K. Vermunt, 2004. "An EM algorithm for the estimation of parametric and nonparametric hierarchical nonlinear models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(2), pages 220-233, May.
    2. Michal Kulich & D.Y. Lin, 2004. "Improving the Efficiency of Relative-Risk Estimation in Case-Cohort Studies," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 832-844, January.
    3. Jian-Qing Shi & Sik-Yum Lee, 1997. "A bayesian estimation of factor score in confirmatory factor model with polytomous, censored or truncated data," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 29-50, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
    2. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    3. Soyoung Kim & Donglin Zeng & Jianwen Cai, 2018. "Analysis of multiple survival events in generalized case‐cohort designs," Biometrics, The International Biometric Society, vol. 74(4), pages 1250-1260, December.
    4. Begoña A. Farizo & John Joyce & Mario Soliño, 2014. "Dealing with Heterogeneous Preferences Using Multilevel Mixed Models," Land Economics, University of Wisconsin Press, vol. 90(1), pages 181-198.
    5. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    6. Chiang, Chin-Tsang & Huang, Ming-Yueh & Bai, Ren-Hong, 2013. "Binary response models with M-phase case-control data," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 332-348.
    7. Yanqing Sun & Li Qi & Fei Heng & Peter B. Gilbert, 2020. "A hybrid approach for the stratified mark‐specific proportional hazards model with missing covariates and missing marks, with application to vaccine efficacy trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 791-814, August.
    8. Yanqing Sun & Xiyuan Qian & Qiong Shou & Peter B. Gilbert, 2017. "Analysis of two-phase sampling data with semiparametric additive hazards models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 377-399, July.
    9. Soyoung Kim & Yayun Xu & Mei‐Jie Zhang & Kwang‐Woo Ahn, 2020. "Stratified proportional subdistribution hazards model with covariate‐adjusted censoring weight for case‐cohort studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1222-1242, December.
    10. Laura Azzimonti & Francesca Ieva & Anna Maria Paganoni, 2013. "Nonlinear nonparametric mixed-effects models for unsupervised classification," Computational Statistics, Springer, vol. 28(4), pages 1549-1570, August.
    11. Yayun Xu & Soyoung Kim & Mei-Jie Zhang & David Couper & Kwang Woo Ahn, 2022. "Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 241-262, April.
    12. Chan, Moon-tong & Yu, Dalei & Yau, Kelvin K.W., 2015. "Multilevel cumulative logistic regression model with random effects: Application to British social attitudes panel survey data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 173-186.
    13. Yei Eun Shin & Ruth M. Pfeiffer & Barry I. Graubard & Mitchell H. Gail, 2022. "Weight calibration to improve efficiency for estimating pure risks from the additive hazards model with the nested case‐control design," Biometrics, The International Biometric Society, vol. 78(1), pages 179-191, March.
    14. Dylan Molenaar & Conor Dolan & Paul Boeck, 2012. "The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 455-478, July.
    15. Zheng, Ming & Zhao, Ziqiang & Yu, Wen, 2013. "Quantile regression analysis of case-cohort data," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 20-34.
    16. Mengling Liu & Wenbin Lu & Chi-hong Tseng, 2010. "Cox Regression in Nested Case–Control Studies with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 66(2), pages 374-381, June.
    17. Adane F. Wogu & Haolin Li & Shanshan Zhao & Hazel B. Nichols & Jianwen Cai, 2023. "Additive subdistribution hazards regression for competing risks data in case‐cohort studies," Biometrics, The International Biometric Society, vol. 79(4), pages 3010-3022, December.
    18. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
    19. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Feature screening for case‐cohort studies with failure time outcome," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 349-370, March.
    20. Asim Ansari & Kamel Jedidi, 2000. "Bayesian factor analysis for multilevel binary observations," Psychometrika, Springer;The Psychometric Society, vol. 65(4), pages 475-496, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:79:y:2014:i:3:p:470-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.