IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v43y2016i4p1140-1152.html
   My bibliography  Save this article

An Extended Single-index Model with Missing Response at Random

Author

Listed:
  • Qihua Wang
  • Tao Zhang
  • Wolfgang Karl Härdle

Abstract

An extended single-index model is considered when responses are missing at random. A three-step estimation procedure is developed to define an estimator for the single index parameter vector by a joint estimating equation. The proposed estimator is shown to be asymptotically normal. An iterative scheme for computing this estimator is proposed. This algorithm only involves one-dimensional nonparametric smoothers, thereby avoiding the data sparsity problem caused by high model dimensionality. Some simulation study is conducted to investigate the finite sample performances of the proposed estimators.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Qihua Wang & Tao Zhang & Wolfgang Karl Härdle, 2016. "An Extended Single-index Model with Missing Response at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1140-1152, December.
  • Handle: RePEc:bla:scjsta:v:43:y:2016:i:4:p:1140-1152
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12233
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    2. Chang, Ziqing & Xue, Liugen & Zhu, Lixing, 2010. "On an asymptotically more efficient estimation of the single-index model," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1898-1901, September.
    3. Liping Zhu & Jinhong You & Qunfang Xu, 2014. "Statistical Inference for Single-index Panel Data Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 830-843, September.
    4. Xue, Liu-Gen & Zhu, Lixing, 2006. "Empirical likelihood for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1295-1312, July.
    5. Ding, Xiaobo & Wang, Qihua, 2011. "Fusion-Refinement Procedure for Dimension Reduction With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1193-1207.
    6. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    7. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    8. Zonghui Hu & Dean A. Follmann & Jing Qin, 2010. "Semiparametric dimension reduction estimation for mean response with missing data," Biometrika, Biometrika Trust, vol. 97(2), pages 305-319.
    9. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudio Agostinelli & Ana M. Bianco & Graciela Boente, 2020. "Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 855-893, June.
    2. Ash Abebe & Huybrechts F. Bindele & Masego Otlaadisa & Boikanyo Makubate, 2021. "Robust estimation of single index models with responses missing at random," Statistical Papers, Springer, vol. 62(5), pages 2195-2225, October.
    3. M. Hristache & V. Patilea, 2017. "Conditional moment models with data missing at random," Biometrika, Biometrika Trust, vol. 104(3), pages 735-742.
    4. Wei Luo, 2022. "On efficient dimension reduction with respect to the interaction between two response variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 269-294, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2014-003 is not listed on IDEAS
    2. Yiping Yang & Tiejun Tong & Gaorong Li, 2019. "SIMEX estimation for single-index model with covariate measurement error," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 137-161, March.
    3. Guo, Xu & Wang, Tao & Xu, Wangli & Zhu, Lixing, 2014. "Dimension reduction with missing response at random," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 228-242.
    4. Bravo, Francesco & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2015. "Wilks' Phenomenon in Two-Step Semiparametric Empirical Likelihood Inference," LIDAM Discussion Papers ISBA 2015016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Lai, Peng & Wang, Qihua, 2014. "Semiparametric efficient estimation for partially linear single-index models with responses missing at random," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 33-50.
    6. Francesco Bravo & David Jacho-Chavez, 2011. "Empirical Likelihood for Efficient Semiparametric Average Treatment Effects," Econometric Reviews, Taylor & Francis Journals, vol. 30(1), pages 1-24.
    7. Bindele, Huybrechts F. & Abebe, Ash, 2015. "Semi-parametric rank regression with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 117-132.
    8. Guo, Xu & Fang, Yun & Zhu, Xuehu & Xu, Wangli & Zhu, Lixing, 2018. "Semiparametric double robust and efficient estimation for mean functionals with response missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 325-339.
    9. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    10. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    11. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Goldenshluger, Alexander, 2002. "Density Deconvolution in the Circular Structural Model," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 360-375, May.
    13. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    14. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    15. Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.
    16. Gorgens, T., 1999. "Semiparametric Estimation of Single-Index Transition Intensities," Papers 99-25, Carleton - School of Public Administration.
    17. Wangli Xu & Xu Guo & Lixing Zhu, 2012. "Goodness-of-fitting for partial linear model with missing response at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 103-118.
    18. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    19. Linton, Oliver, 2002. "Edgeworth approximations for semiparametric instrumental variable estimators and test statistics," Journal of Econometrics, Elsevier, vol. 106(2), pages 325-368, February.
    20. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    21. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:43:y:2016:i:4:p:1140-1152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.