IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/0596.html
   My bibliography  Save this paper

Semiparametric Estimation of Single-Index Transition Intensities

Author

Listed:
  • Tue Gorgens

    (University of New South Wales)

Abstract

This research develops semiparametric kernel-based estimators of state-specific conditional transition intensities, h(y|x), for duration models with right-censoring and/or multiple destinations (competing risks). Both discrete and continuous duration data are considered. The maintained assumption is that h(y|x) depends on x only through an index x'b. In contrast to existing semiparametric estimators, proportional intensities is not assumed. The new estimators are asymptotically normally distributed. The estimator of b is root-n consistent. The estimator of h(y|x) achieves the one-dimensional rate of convergence. Thus the single-index assumption eliminates the "curse of dimensionality". The estimators perform well in Monte Carlo experiments.

Suggested Citation

  • Tue Gorgens, 2000. "Semiparametric Estimation of Single-Index Transition Intensities," Econometric Society World Congress 2000 Contributed Papers 0596, Econometric Society.
  • Handle: RePEc:ecm:wc2000:0596
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/0596.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    2. Joel L. Horowitz, 1999. "Semiparametric Estimation of a Proportional Hazard Model with Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 67(5), pages 1001-1028, September.
    3. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    4. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    5. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    6. Horowitz, Joel & Hardle, Wolfgang, 1994. "Direct Semiparametric Estimation of Single-Index Models With Discrete Covariates," Working Papers 94-22, University of Iowa, Department of Economics.
    7. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    8. Chunrong Ai, 1997. "A Semiparametric Maximum Likelihood Estimator," Econometrica, Econometric Society, vol. 65(4), pages 933-964, July.
    9. Oliver LINTON, "undated". "Kernel estimation in a nonparametric marker dependent Hazard Model," Statistic und Oekonometrie 9313, Humboldt Universitaet Berlin.
    10. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    11. Ichimura, H., 1991. "Semiparametric Least Squares (sls) and Weighted SLS Estimation of Single- Index Models," Papers 264, Minnesota - Center for Economic Research.
    12. Horowitz, Joel L, 1996. "Semiparametric Estimation of a Regression Model with an Unknown Transformation of the Dependent Variable," Econometrica, Econometric Society, vol. 64(1), pages 103-137, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    3. Khan, Shakeeb, 2001. "Two-stage rank estimation of quantile index models," Journal of Econometrics, Elsevier, vol. 100(2), pages 319-355, February.
    4. Horowitz, Joel L. & Lee, Sokbae, 2004. "Semiparametric estimation of a panel data proportional hazards model with fixed effects," Journal of Econometrics, Elsevier, vol. 119(1), pages 155-198, March.
    5. Abrevaya, Jason, 1999. "Leapfrog estimation of a fixed-effects model with unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 93(2), pages 203-228, December.
    6. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    7. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
    8. Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
    9. Subbotin, Viktor, 2007. "Asymptotic and bootstrap properties of rank regressions," MPRA Paper 9030, University Library of Munich, Germany, revised 20 Mar 2008.
    10. Shakeeb Khan & Elie Tamer, 2002. "Pairwise Comparison Estimation of Censored Transformation Models," RCER Working Papers 495, University of Rochester - Center for Economic Research (RCER).
    11. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    12. Bijwaard Govert E. & Ridder Geert & Woutersen Tiemen, 2013. "A Simple GMM Estimator for the Semiparametric Mixed Proportional Hazard Model," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 1-23, July.
    13. Bhattacharjee, Arnab, 2009. "Testing for Proportional Hazards with Unrestricted Univariate Unobserved Heterogeneity," SIRE Discussion Papers 2009-22, Scottish Institute for Research in Economics (SIRE).
    14. Lee, Sokbae, 2008. "Estimating Panel Data Duration Models With Censored Data," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1254-1276, October.
    15. Chan Shen, 2019. "Recursive Differencing for Estimating Semiparametric Models," Departmental Working Papers 201903, Rutgers University, Department of Economics.
    16. Horowitz, Joel L., 2004. "Semiparametric models," Papers 2004,17, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    17. Jerry Hausman & Tiemen Woutersen, 2014. "Estimating the Derivative Function and Counterfactuals in Duration Models with Heterogeneity," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 472-496, August.
    18. Chen, Songnian & Zhang, Hanghui, 2020. "n-prediction of generalized heteroscedastic transformation regression models," Journal of Econometrics, Elsevier, vol. 215(2), pages 305-340.
    19. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    20. Sokbae Lee, 2006. "Identification of a competing risks model with unknown transformations of latent failure times," Biometrika, Biometrika Trust, vol. 93(4), pages 996-1002, December.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.