IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/58173.html
   My bibliography  Save this paper

Optimal smoothing for a computationally and statistically efficient single index estimator

Author

Listed:
  • Hardle, Wolfgang
  • Xia, Yingcun
  • Linton, Oliver

Abstract

In semiparametric models it is a common approach to under-smooth the nonparametric functions in order that estimators of the finite dimensional parameters can achieve root-n consistency. The requirement of under-smoothing may result as we show from inefficient estimation methods or technical difficulties. Based on local linear kernel smoother, we propose an estimation method to estimate the single-index model without under-smoothing. Under some conditions, our estimator of the single-index is asymptotically normal and most efficient in the semi-parametric sense. Moreover, we derive higher expansions for our estimator and use them to define an optimal bandwidth for the purposes of index estimation. As a result we obtain a practically more relevant method and we show its superior performance in a variety of applications.

Suggested Citation

  • Hardle, Wolfgang & Xia, Yingcun & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," LSE Research Online Documents on Economics 58173, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:58173
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/58173/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hardle, W. & Hall, P. & Ichimura, H., 1991. "Optimal smoothing in single index models," LIDAM Discussion Papers CORE 1991007, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    3. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    4. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    5. Xia, Yingcun, 2006. "Asymptotic Distributions For Two Estimators Of The Single-Index Model," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1112-1137, December.
    6. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521370905, September.
    7. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
    8. Yoshihiko Nishiyama & Peter M. Robinson, 2005. "The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 73(3), pages 903-948, May.
    9. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    10. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521424318, September.
    11. Xiangrong Yin & R. Dennis Cook, 2005. "Direction estimation in single-index regressions," Biometrika, Biometrika Trust, vol. 92(2), pages 371-384, June.
    12. Y. Nishiyama & P. M. Robinson, 2000. "Edgeworth Expansions for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 68(4), pages 931-980, July.
    13. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    14. Ichimura, H., 1991. "Semiparametric Least Squares (sls) and Weighted SLS Estimation of Single- Index Models," Papers 264, Minnesota - Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Strausz, Roland, 2009. "The political economy of regulatory risk," SFB 649 Discussion Papers 2009-040, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. Chuan Goh, 2009. "Bootstrap-based Bandwidth Selection for Semiparametric Generalized Regression Estimators," Working Papers tecipa-375, University of Toronto, Department of Economics.
    3. Michał Grajek & Lars-Hendrik Röller, 2012. "Regulation and Investment in Network Industries: Evidence from European Telecoms," Journal of Law and Economics, University of Chicago Press, vol. 55(1), pages 189-216.
    4. Grith, Maria & Härdle, Wolfgang Karl & Park, Juhyun, 2009. "Shape invariant modelling pricing kernels and risk aversion," SFB 649 Discussion Papers 2009-041, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. repec:hum:wpaper:sfb649dp2009-039 is not listed on IDEAS
    6. Choroś, Barbara & Härdle, Wolfgang Karl & Okhrin, Ostap, 2009. "CDO and HAC," SFB 649 Discussion Papers 2009-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. repec:hum:wpaper:sfb649dp2009-038 is not listed on IDEAS
    8. repec:hum:wpaper:sfb649dp2009-040 is not listed on IDEAS
    9. repec:hum:wpaper:sfb649dp2009-041 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2009-028 is not listed on IDEAS
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    3. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    4. Nishiyama, Y., 2004. "Minimum normal approximation error bandwidth selection for averaged derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 53-61.
    5. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    6. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    7. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    8. Linton, Oliver, 2002. "Edgeworth approximations for semiparametric instrumental variable estimators and test statistics," Journal of Econometrics, Elsevier, vol. 106(2), pages 325-368, February.
    9. Marcia M Schafgans & Victoria Zinde-Walshyz, 2008. "Smoothness Adaptive AverageDerivative Estimation," STICERD - Econometrics Paper Series 529, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Hidehiko Ichimura & Oliver Linton, 2001. "Asymptotic expansions for some semiparametric program evaluation estimators," CeMMAP working papers 04/01, Institute for Fiscal Studies.
    11. Feng, Sanying & Kong, Kaidi & Kong, Yinfei & Li, Gaorong & Wang, Zhaoliang, 2022. "Statistical inference of heterogeneous treatment effect based on single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    12. Sadikoglu, Serhan, 2019. "Essays in econometric theory," Other publications TiSEM 99d83644-f9dc-49e3-a4e1-5, Tilburg University, School of Economics and Management.
    13. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    14. SCHAFGANS, Marcia M.A. & ZINDE-WALSH, Victoria, 2007. "Robust Average Derivative Estimation," Cahiers de recherche 12-2007, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    15. Bas Donkers & Marcia M Schafgans, 2005. "A method of moments estimator for semiparametric index models," STICERD - Econometrics Paper Series 493, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    16. Kotlyarova, Yulia & Schafgans, Marcia M. A. & Zinde‐Walsh, Victoria, 2011. "Adapting kernel estimation to uncertain smoothness," LSE Research Online Documents on Economics 42015, London School of Economics and Political Science, LSE Library.
    17. Véronique Flambard & Pierre Lasserre & Pierre Mohnen, 2007. "Snow removal auctions in Montreal: costs, informational rents, and procurement management," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(1), pages 245-277, February.
    18. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2014. "Small Bandwidth Asymptotics For Density-Weighted Average Derivatives," Econometric Theory, Cambridge University Press, vol. 30(1), pages 176-200, February.
    19. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    20. Feng, Long & Zou, Changliang & Wang, Zhaojun, 2012. "Rank-based inference for the single-index model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 535-541.
    21. Xia, Yingcun & Härdle, Wolfgang, 2002. "Semi-parametric estimation of generalized partially linear single-index models," SFB 373 Discussion Papers 2002,56, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    More about this item

    Keywords

    ADE; asymptotics; bandwidth; MAVE method; semiparametric efficiency;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:58173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.