IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v69y2014icp228-242.html
   My bibliography  Save this article

Dimension reduction with missing response at random

Author

Listed:
  • Guo, Xu
  • Wang, Tao
  • Xu, Wangli
  • Zhu, Lixing

Abstract

When there are many predictors, how to efficiently impute responses missing at random is an important problem to deal with for regression analysis because this missing mechanism, unlike missing completely at random, is highly related to high-dimensional predictor vectors. In sufficient dimension reduction framework, the fusion-refinement (FR) method in the literature is a promising approach. To make estimation more accurate and efficient, two methods are suggested in this paper. Among them, one method uses the observed data to help on missing data generation, and the other one is an ad hoc approach that mainly reduces the dimension in the nonparametric smoothing in data generation. A data-adaptive synthesization of these two methods is also developed. Simulations are conducted to examine their performance and a HIV clinical trial dataset is analyzed for illustration.

Suggested Citation

  • Guo, Xu & Wang, Tao & Xu, Wangli & Zhu, Lixing, 2014. "Dimension reduction with missing response at random," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 228-242.
  • Handle: RePEc:eee:csdana:v:69:y:2014:i:c:p:228-242
    DOI: 10.1016/j.csda.2013.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313002879
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Li-Ping & Zhu, Li-Xing, 2007. "On kernel method for sliced average variance estimation," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 970-991, May.
    2. Bura E. & Cook R.D., 2001. "Extending Sliced Inverse Regression: the Weighted Chi-Squared Test," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 996-1003, September.
    3. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    4. Zonghui Hu & Dean A. Follmann & Jing Qin, 2010. "Semiparametric dimension reduction estimation for mean response with missing data," Biometrika, Biometrika Trust, vol. 97(2), pages 305-319.
    5. Liping Zhu & Tao Wang & Lixing Zhu & Louis Ferré, 2010. "Sufficient dimension reduction through discretization-expectation estimation," Biometrika, Biometrika Trust, vol. 97(2), pages 295-304.
    6. Hall, Peter & Wolff, Rodney C. L. & Yao, Qiwei, 1999. "Methods for estimating a conditional distribution function," LSE Research Online Documents on Economics 6631, London School of Economics and Political Science, LSE Library.
    7. Cook, R. Dennis & Forzani, Liliana, 2009. "Likelihood-Based Sufficient Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 197-208.
    8. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    9. Li, Lexin & Lu, Wenbin, 2008. "Sufficient Dimension Reduction With Missing Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 822-831, June.
    10. Ding, Xiaobo & Wang, Qihua, 2011. "Fusion-Refinement Procedure for Dimension Reduction With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1193-1207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Guo-Liang & Xu, Hong-Xia & Liang, Han-Ying, 2019. "Dimension reduction estimation for central mean subspace with missing multivariate response," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    2. Guo, Xu & Fang, Yun & Zhu, Xuehu & Xu, Wangli & Zhu, Lixing, 2018. "Semiparametric double robust and efficient estimation for mean functionals with response missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 325-339.
    3. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    4. Dong, Yuexiao & Xia, Qi & Tang, Cheng Yong & Li, Zeda, 2018. "On sufficient dimension reduction with missing responses through estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 67-77.
    5. Wei Luo, 2022. "On efficient dimension reduction with respect to the interaction between two response variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 269-294, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    3. Qihua Wang & Tao Zhang & Wolfgang Karl Härdle, 2016. "An Extended Single-index Model with Missing Response at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1140-1152, December.
    4. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    5. Dong, Yuexiao & Xia, Qi & Tang, Cheng Yong & Li, Zeda, 2018. "On sufficient dimension reduction with missing responses through estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 67-77.
    6. Zhu, Li-Ping & Yu, Zhou & Zhu, Li-Xing, 2010. "A sparse eigen-decomposition estimation in semiparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 976-986, April.
    7. Guo, Xu & Fang, Yun & Zhu, Xuehu & Xu, Wangli & Zhu, Lixing, 2018. "Semiparametric double robust and efficient estimation for mean functionals with response missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 325-339.
    8. Xie, Chuanlong & Zhu, Lixing, 2020. "Generalized kernel-based inverse regression methods for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    9. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    10. repec:hum:wpaper:sfb649dp2014-003 is not listed on IDEAS
    11. Wang, Tao & Zhu, Lixing, 2013. "Sparse sufficient dimension reduction using optimal scoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 223-232.
    12. Wei Luo, 2022. "On efficient dimension reduction with respect to the interaction between two response variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 269-294, April.
    13. Xinchao Luo & Lixing Zhu & Hongtu Zhu, 2016. "Single‐index varying coefficient model for functional responses," Biometrics, The International Biometric Society, vol. 72(4), pages 1275-1284, December.
    14. Li, Junlan & Wang, Tao, 2021. "Dimension reduction in binary response regression: A joint modeling approach," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    15. Hung Hung & Su‐Yun Huang, 2019. "Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem," Biometrics, The International Biometric Society, vol. 75(1), pages 245-255, March.
    16. repec:wyi:journl:002176 is not listed on IDEAS
    17. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    18. Li‐Ping Zhu & Li‐Xing Zhu, 2009. "On distribution‐weighted partial least squares with diverging number of highly correlated predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 525-548, April.
    19. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    20. Lei Wang, 2019. "Dimension reduction for kernel-assisted M-estimators with missing response at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 889-910, August.
    21. Zhou, Jingke & Xu, Wangli & Zhu, Lixing, 2015. "Robust estimating equation-based sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 99-118.
    22. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:69:y:2014:i:c:p:228-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.