IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v90y2004i2p384-392.html
   My bibliography  Save this article

Sharp minimaxity and spherical deconvolution for super-smooth error distributions

Author

Listed:
  • Kim, Peter T.
  • Koo, Ja-Yong
  • Park, Heon Jin

Abstract

The spherical deconvolution problem was first proposed by Rooij and Ruymgaart (in: G. Roussas (Ed.), Nonparametric Functional Estimation and Related Topics, Kluwer Academic Publishers, Dordrecht, 1991, pp. 679-690) and subsequently solved in Healy et al. (J. Multivariate Anal. 67 (1998) 1). Kim and Koo (J. Multivariate Anal. 80 (2002) 21) established minimaxity in the L2-rate of convergence. In this paper, we improve upon the latter and establish sharp minimaxity under a super-smooth condition on the error distribution.

Suggested Citation

  • Kim, Peter T. & Koo, Ja-Yong & Park, Heon Jin, 2004. "Sharp minimaxity and spherical deconvolution for super-smooth error distributions," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 384-392, August.
  • Handle: RePEc:eee:jmvana:v:90:y:2004:i:2:p:384-392
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00147-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Healy, Dennis M. & Hendriks, Harrie & Kim, Peter T., 1998. "Spherical Deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 1-22, October.
    2. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    3. Kim, Peter T. & Koo, Ja-Yong, 2002. "Optimal Spherical Deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 21-42, January.
    4. Goldenshluger, Alexander, 2002. "Density Deconvolution in the Circular Structural Model," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 360-375, May.
    5. Hardle, Wolfgang & Tsybakov, A. B., 1993. "How sensitive are average derivatives?," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 31-48, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jammalamadaka, S. Rao & Terdik, György H., 2019. "Harmonic analysis and distribution-free inference for spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 436-451.
    2. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    3. Pham Ngoc, Thanh Mai & Rivoirard, Vincent, 2013. "The dictionary approach for spherical deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 138-156.
    4. Kim, Peter T. & Koo, Ja-Yong & Luo, Zhi-Ming, 2009. "Weyl eigenvalue asymptotics and sharp adaptation on vector bundles," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1962-1978, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koo, Ja-Yong & Kim, Peter T., 2008. "Sharp adaptation for spherical inverse problems with applications to medical imaging," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 165-190, February.
    2. Goldenshluger, Alexander, 2002. "Density Deconvolution in the Circular Structural Model," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 360-375, May.
    3. Kim, Peter T. & Koo, Ja-Yong & Luo, Zhi-Ming, 2009. "Weyl eigenvalue asymptotics and sharp adaptation on vector bundles," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1962-1978, October.
    4. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    5. Yingcun Xia & Wolfgang Härdle & Oliver Linton, 2009. "Optimal Smoothing for a Computationally and Statistically Efficient Single Index Estimator," SFB 649 Discussion Papers SFB649DP2009-028, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2013. "Frontier estimation with kernel regression on high order moments," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 172-189.
    7. Qihua Wang & Tao Zhang & Wolfgang Karl Härdle, 2016. "An Extended Single-index Model with Missing Response at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1140-1152, December.
    8. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    9. Véronique Flambard & Pierre Lasserre & Pierre Mohnen, 2007. "Snow removal auctions in Montreal: costs, informational rents, and procurement management," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(1), pages 245-277, February.
    10. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    11. Vareschi, T., 2014. "Application of second generation wavelets to blind spherical deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 398-417.
    12. Yiping Yang & Tiejun Tong & Gaorong Li, 2019. "SIMEX estimation for single-index model with covariate measurement error," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 137-161, March.
    13. Almekinders, Geert J & Eijffinger, Sylvester C W, 1994. "Daily Bundesbank and Federal Reserve Interventions: Are They a Reaction to Changes in the Level and Volatility of the DM/$-Rate?," Empirical Economics, Springer, vol. 19(1), pages 111-130.
    14. Girard, Séphane & Jacob, Pierre, 2009. "Frontier estimation with local polynomials and high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1691-1705, September.
    15. Bissantz, Nicolai & Hohage, T. & Munk, Axel & Ruymgaart, F., 2007. "Convergence rates of general regularization methods for statistical inverse problems and applications," Technical Reports 2007,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    16. Kyungchul Song, 2009. "Bootstrapping Semiparametric Models with Single-Index Nuisance Parameters, Second Version," PIER Working Paper Archive 10-026, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 02 Aug 2010.
    17. Marian Hristache, 2002. "Are Efficient Estimators in Single-Index Models Really Efficient? A Computational Discussion," Computational Statistics, Springer, vol. 17(4), pages 453-464, December.
    18. Feng, Sanying & Kong, Kaidi & Kong, Yinfei & Li, Gaorong & Wang, Zhaoliang, 2022. "Statistical inference of heterogeneous treatment effect based on single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    19. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2010. "Robust Data-Driven Inference for Density-Weighted Average Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1070-1083.
    20. Gorgens, T., 1999. "Semiparametric Estimation of Single-Index Transition Intensities," Papers 99-25, Carleton - School of Public Administration.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:90:y:2004:i:2:p:384-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.