IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v37y2010i1p91-108.html
   My bibliography  Save this article

Semiparametric Density Deconvolution

Author

Listed:
  • MARTIN L. HAZELTON
  • BERWIN A. TURLACH

Abstract

. A new semiparametric method for density deconvolution is proposed, based on a model in which only the ratio of the unconvoluted to convoluted densities is specified parametrically. Deconvolution results from reweighting the terms in a standard kernel density estimator, where the weights are defined by the parametric density ratio. We propose that in practice, the density ratio be modelled on the log‐scale as a cubic spline with a fixed number of knots. Parameter estimation is based on maximization of a type of semiparametric likelihood. The resulting asymptotic properties for our deconvolution estimator mirror the convergence rates in standard density estimation without measurement error when attention is restricted to our semiparametric class of densities. Furthermore, numerical studies indicate that for practical sample sizes our weighted kernel estimator can provide better results than the classical non‐parametric kernel estimator for a range of densities outside the specified semiparametric class.

Suggested Citation

  • Martin L. Hazelton & Berwin A. Turlach, 2010. "Semiparametric Density Deconvolution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 91-108, March.
  • Handle: RePEc:bla:scjsta:v:37:y:2010:i:1:p:91-108
    DOI: 10.1111/j.1467-9469.2009.00669.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2009.00669.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2009.00669.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark A. van de Wiel & Kyung In Kim, 2007. "Estimating the False Discovery Rate Using Nonparametric Deconvolution," Biometrics, The International Biometric Society, vol. 63(3), pages 806-815, September.
    2. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    3. Peter Hall & Peihua Qiu, 2005. "Discrete-transform approach to deconvolution problems," Biometrika, Biometrika Trust, vol. 92(1), pages 135-148, March.
    4. Bert Van Es & Hae‐Won Uh, 2005. "Asymptotic Normality of Kernel‐Type Deconvolution Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 467-483, September.
    5. Walter, Gilbert G., 1999. "Density estimation in the presence of noise," Statistics & Probability Letters, Elsevier, vol. 41(3), pages 237-246, February.
    6. Konstantinos Fokianos, 2004. "Merging information for semiparametric density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 941-958, November.
    7. Raymond J. Carroll & Peter Hall, 2004. "Low order approximations in deconvolution and regression with errors in variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 31-46, February.
    8. Wand, M. P., 1998. "Finite sample performance of deconvolving density estimators," Statistics & Probability Letters, Elsevier, vol. 37(2), pages 131-139, February.
    9. Raymond J. Carroll & Kathryn Roeder & Larry Wasserman, 1999. "Flexible Parametric Measurement Error Models," Biometrics, The International Biometric Society, vol. 55(1), pages 44-54, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy, Arkaprava & Sarkar, Abhra, 2023. "Bayesian semiparametric multivariate density deconvolution via stochastic rotation of replicates," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    2. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    3. William Horrace & Christopher Parmeter, 2011. "Semiparametric deconvolution with unknown error variance," Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
    4. Yang Zu, 2015. "A Note on the Asymptotic Normality of the Kernel Deconvolution Density Estimator with Logarithmic Chi-Square Noise," Econometrics, MDPI, vol. 3(3), pages 1-16, July.
    5. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    6. Peter Hall & Tapabrata Maiti, 2008. "Non‐parametric inference for clustered binary and count data when only summary information is available," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 725-738, September.
    7. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2021. "Average Derivative Estimation Under Measurement Error," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1004-1033, October.
    8. Abhra Sarkar & Bani K. Mallick & Raymond J. Carroll, 2014. "Bayesian semiparametric regression in the presence of conditionally heteroscedastic measurement and regression errors," Biometrics, The International Biometric Society, vol. 70(4), pages 823-834, December.
    9. Otsu, Taisuke & Taylor, Luke, 2021. "Specification Testing For Errors-In-Variables Models," Econometric Theory, Cambridge University Press, vol. 37(4), pages 747-768, August.
    10. Julie McIntyre & Brent A. Johnson & Stephen M. Rappaport, 2018. "Monte Carlo methods for nonparametric regression with heteroscedastic measurement error," Biometrics, The International Biometric Society, vol. 74(2), pages 498-505, June.
    11. Bissantz, Nicolai & Dümbgen, Lutz & Holzmann, Hajo & Munk, Axel, 2007. "Nonparametric confidence bands in deconvolution density estimation," Technical Reports 2007,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Delaigle, Aurore & Hall, Peter, 2006. "On optimal kernel choice for deconvolution," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1594-1602, September.
    13. Marco Di Marzio & Stefania Fensore & Charles C. Taylor, 2023. "Kernel regression for errors-in-variables problems in the circular domain," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1217-1237, October.
    14. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    15. Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
    16. Carrasco, Marine & Florens, Jean-Pierre, 2011. "A Spectral Method For Deconvolving A Density," Econometric Theory, Cambridge University Press, vol. 27(3), pages 546-581, June.
    17. Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6bm6n30x, Department of Agricultural & Resource Economics, UC Berkeley.
    18. Gustafson, Paul & Le, Nhu D. & Vallée, Marc, 2000. "Parametric Bayesian analysis of case-control data with imprecise exposure measurements," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 357-363, May.
    19. van Es, Bert & Gugushvili, Shota, 2008. "Weak convergence of the supremum distance for supersmooth kernel deconvolution," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2932-2938, December.
    20. John Staudenmayer & Donna Spiegelman, 2002. "Segmented Regression in the Presence of Covariate Measurement Error in Main Study/Validation Study Designs," Biometrics, The International Biometric Society, vol. 58(4), pages 871-877, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:37:y:2010:i:1:p:91-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.