IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i17p2932-2938.html
   My bibliography  Save this article

Weak convergence of the supremum distance for supersmooth kernel deconvolution

Author

Listed:
  • van Es, Bert
  • Gugushvili, Shota

Abstract

We derive the asymptotic distribution of the supremum distance of the deconvolution kernel density estimator to its expectation for certain supersmooth deconvolution problems. It turns out that the asymptotics are essentially different from corresponding results for ordinary smooth deconvolution.

Suggested Citation

  • van Es, Bert & Gugushvili, Shota, 2008. "Weak convergence of the supremum distance for supersmooth kernel deconvolution," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2932-2938, December.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:17:p:2932-2938
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00239-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bert Van Es & Hae‐Won Uh, 2005. "Asymptotic Normality of Kernel‐Type Deconvolution Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 467-483, September.
    2. Hajo Holzmann & Leif Boysen, 2006. "Integrated Square Error Asymptotics for Supersmooth Deconvolution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 849-860, December.
    3. Nicolai Bissantz & Lutz Dümbgen & Hajo Holzmann & Axel Munk, 2007. "Non‐parametric confidence bands in deconvolution density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 483-506, June.
    4. van Es, A. J. & Kok, A. R., 1998. "Simple kernel estimators for certain nonparametric deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 39(2), pages 151-160, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    2. Hao Dong & Yuya Sasaki, 2022. "Estimation of average derivatives of latent regressors: with an application to inference on buffer-stock saving," Departmental Working Papers 2204, Southern Methodist University, Department of Economics.
    3. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    4. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2021. "Average Derivative Estimation Under Measurement Error," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1004-1033, October.
    5. Katharina Proksch & Nicolai Bissantz & Hajo Holzmann, 2022. "Simultaneous inference for Berkson errors-in-variables regression under fixed design," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 773-800, August.
    6. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    7. Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Robust inference in deconvolution," Quantitative Economics, Econometric Society, vol. 12(1), pages 109-142, January.
    8. Kengo Kato & Yuya Sasaki & Takuya Ura, 2018. "Inference based on Kotlarski's Identity," Papers 1808.09375, arXiv.org, revised Sep 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2021. "Average Derivative Estimation Under Measurement Error," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1004-1033, October.
    2. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    3. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    4. Otsu, Taisuke & Taylor, Luke, 2021. "Specification Testing For Errors-In-Variables Models," Econometric Theory, Cambridge University Press, vol. 37(4), pages 747-768, August.
    5. Adusumilli, Karun & Kurisu, Daisuke & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," Journal of Econometrics, Elsevier, vol. 215(1), pages 131-164.
    6. Dong, Hao & Taylor, Luke, 2022. "Nonparametric Significance Testing In Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
    7. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    8. Adusumilli, Karun & Kurisu, Daisies & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," LSE Research Online Documents on Economics 102692, London School of Economics and Political Science, LSE Library.
    9. Bissantz, Nicolai & Holzmann, Hajo, 2007. "Statistical inference for inverse problems," Technical Reports 2007,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    11. Peter Hall & Tapabrata Maiti, 2008. "Non‐parametric inference for clustered binary and count data when only summary information is available," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 725-738, September.
    12. Hao Dong & Yuya Sasaki, 2022. "Estimation of average derivatives of latent regressors: with an application to inference on buffer-stock saving," Departmental Working Papers 2204, Southern Methodist University, Department of Economics.
    13. Birke, Melanie & Bissantz, Nicolai, 2007. "Shape constrained estimators in inverse regression models with convolution-type operator," Technical Reports 2007,35, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    15. Söhl, Jakob & Trabs, Mathias, 2012. "A uniform central limit theorem and efficiency for deconvolution estimators," SFB 649 Discussion Papers 2012-046, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. repec:hum:wpaper:sfb649dp2012-046 is not listed on IDEAS
    17. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers CWP37/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," LSE Research Online Documents on Economics 112676, London School of Economics and Political Science, LSE Library.
    19. Mynbaev, Kairat, 2011. "Distributions escaping to infinity and the limiting power of the Cliff-Ord test for autocorrelation," MPRA Paper 44402, University Library of Munich, Germany, revised 18 Sep 2012.
    20. Ma, Jun & Marmer, Vadim & Yu, Zhengfei, 2023. "Inference on individual treatment effects in nonseparable triangular models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2096-2124.
    21. Mynbaev, Kairat & Martins-Filho, Carlos, 2015. "Consistency and asymptotic normality for a nonparametric prediction under measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 166-188.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:17:p:2932-2938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.