IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i15p1594-1602.html
   My bibliography  Save this article

On optimal kernel choice for deconvolution

Author

Listed:
  • Delaigle, Aurore
  • Hall, Peter

Abstract

In this note we show that, from a conventional viewpoint, there are particularly close parallels between optimal-kernel-choice problems in non-parametric deconvolution, and their better-understood counterparts in density estimation and regression. However, other aspects of these problems are distinctly different, and this property leads us to conclude that "optimal" kernels do not give satisfactory performance when applied to deconvolution. This unexpected result stems from the fact that standard side conditions, which are used to ensure that the familiar kernel-choice problem has a unique solution, do not have statistically beneficial implications for deconvolution estimators. In consequence, certain "sub-optimal" kernels produce estimators that enjoy both greater efficiency and greater visual smoothness.

Suggested Citation

  • Delaigle, Aurore & Hall, Peter, 2006. "On optimal kernel choice for deconvolution," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1594-1602, September.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:15:p:1594-1602
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(06)00115-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Granovsky B.L. & Müller H.G. & Pfeifer C., 1995. "Some Remarks On Optimal Kernel Functions," Statistics & Risk Modeling, De Gruyter, vol. 13(2), pages 101-116, February.
    2. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    3. A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 19-47, March.
    4. Granovsky B. L. & Müller H.-G., 1989. "On The Optimality Of A Class Of Polynomial Kernel Functions," Statistics & Risk Modeling, De Gruyter, vol. 7(4), pages 301-312, April.
    5. Marron, J. S. & Nolan, D., 1988. "Canonical kernels for density estimation," Statistics & Probability Letters, Elsevier, vol. 7(3), pages 195-199, December.
    6. Fan, Jianqing & Hu, Tien-Chung, 1992. "Bias correction and higher order kernel functions," Statistics & Probability Letters, Elsevier, vol. 13(3), pages 235-243, February.
    7. Wand, M. P., 1998. "Finite sample performance of deconvolving density estimators," Statistics & Probability Letters, Elsevier, vol. 37(2), pages 131-139, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costa, Manon & Gadat, Sébastien & Gonnord, Pauline & Risser, Laurent, 2018. "Cytometry inference through adaptive atomic deconvolution," TSE Working Papers 18-905, Toulouse School of Economics (TSE).
    2. Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
    3. Shota Gugushvili & Bert van Es & Peter Spreij, 2011. "Deconvolution for an atomic distribution: rates of convergence," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 1003-1029.
    4. Gong, Xiaodong & Gao, Jiti, 2015. "Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia," IZA Discussion Papers 9265, Institute of Labor Economics (IZA).
    5. Adusumilli, Karun & Kurisu, Daisies & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," LSE Research Online Documents on Economics 102692, London School of Economics and Political Science, LSE Library.
    6. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
    7. Irene Botosaru, 2017. "Identifying Distributions in a Panel Model with Heteroskedasticity: An Application to Earnings Volatility," Discussion Papers dp17-11, Department of Economics, Simon Fraser University.
    8. Adusumilli, Karun & Kurisu, Daisuke & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," Journal of Econometrics, Elsevier, vol. 215(1), pages 131-164.
    9. Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    10. Cao Xuan Phuong & Le Thi Hong Thuy & Vo Nguyen Tuyet Doan, 2022. "Nonparametric estimation of cumulative distribution function from noisy data in the presence of Berkson and classical errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 289-322, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    2. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    3. Hao Dong & Taisuke Otsu & Luke Taylor, 2023. "Bandwidth selection for nonparametric regression with errors-in-variables," Econometric Reviews, Taylor & Francis Journals, vol. 42(4), pages 393-419, April.
    4. Xiaodong Gong & Jiti Gao, 2015. "Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia," Monash Econometrics and Business Statistics Working Papers 6/15, Monash University, Department of Econometrics and Business Statistics.
    5. Julie McIntyre & Leonard Stefanski, 2011. "Density Estimation with Replicate Heteroscedastic Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 81-99, February.
    6. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
    7. Julie McIntyre & Brent A. Johnson & Stephen M. Rappaport, 2018. "Monte Carlo methods for nonparametric regression with heteroscedastic measurement error," Biometrics, The International Biometric Society, vol. 74(2), pages 498-505, June.
    8. William Horrace & Christopher Parmeter, 2011. "Semiparametric deconvolution with unknown error variance," Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
    9. Martin L. Hazelton & Berwin A. Turlach, 2010. "Semiparametric Density Deconvolution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 91-108, March.
    10. Delaigle, A. & Gijbels, I., 2006. "Data-driven boundary estimation in deconvolution problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1965-1994, April.
    11. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    12. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    13. Fabienne Comte & Adeline Samson, 2012. "Nonparametric estimation of random-effects densities in linear mixed-effects model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 951-975, December.
    14. Camelia Minoiu & Sanjay Reddy, 2014. "Kernel density estimation on grouped data: the case of poverty assessment," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 12(2), pages 163-189, June.
    15. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    16. Parmeter, Christopher F., 2008. "The effect of measurement error on the estimated shape of the world distribution of income," Economics Letters, Elsevier, vol. 100(3), pages 373-376, September.
    17. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    18. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    19. Gao, H. Oliver & Johnson, Lynn Schooley, 2009. "Methods of analysis for vehicle soak time data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(8), pages 744-754, October.
    20. Peter Hall & Tapabrata Maiti, 2008. "Non‐parametric inference for clustered binary and count data when only summary information is available," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 725-738, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:15:p:1594-1602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.