On optimal kernel choice for deconvolution
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Granovsky B.L. & Müller H.G. & Pfeifer C., 1995. "Some Remarks On Optimal Kernel Functions," Statistics & Risk Modeling, De Gruyter, vol. 13(2), pages 101-116, February.
- Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
- A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 19-47, March.
- Granovsky B. L. & Müller H.-G., 1989. "On The Optimality Of A Class Of Polynomial Kernel Functions," Statistics & Risk Modeling, De Gruyter, vol. 7(4), pages 301-312, April.
- Marron, J. S. & Nolan, D., 1988. "Canonical kernels for density estimation," Statistics & Probability Letters, Elsevier, vol. 7(3), pages 195-199, December.
- Fan, Jianqing & Hu, Tien-Chung, 1992. "Bias correction and higher order kernel functions," Statistics & Probability Letters, Elsevier, vol. 13(3), pages 235-243, February.
- Wand, M. P., 1998. "Finite sample performance of deconvolving density estimators," Statistics & Probability Letters, Elsevier, vol. 37(2), pages 131-139, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Costa, Manon & Gadat, Sébastien & Gonnord, Pauline & Risser, Laurent, 2018. "Cytometry inference through adaptive atomic deconvolution," TSE Working Papers 18-905, Toulouse School of Economics (TSE).
- Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
- Shota Gugushvili & Bert van Es & Peter Spreij, 2011. "Deconvolution for an atomic distribution: rates of convergence," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 1003-1029.
- Gong, Xiaodong & Gao, Jiti, 2015.
"Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia,"
IZA Discussion Papers
9265, Institute of Labor Economics (IZA).
- Xiaodong Gong & Jiti Gao, 2015. "Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia," Monash Econometrics and Business Statistics Working Papers 6/15, Monash University, Department of Econometrics and Business Statistics.
- Xiaodong Gong & Jiti Gao, 2017. "Nonparametric kernel estimation of the impact of tax policy on the demand for private health insurance in Australia," Monash Econometrics and Business Statistics Working Papers 7/17, Monash University, Department of Econometrics and Business Statistics.
- Adusumilli, Karun & Kurisu, Daisies & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," LSE Research Online Documents on Economics 102692, London School of Economics and Political Science, LSE Library.
- Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
- Irene Botosaru, 2017. "Identifying Distributions in a Panel Model with Heteroskedasticity: An Application to Earnings Volatility," Discussion Papers dp17-11, Department of Economics, Simon Fraser University.
- Adusumilli, Karun & Kurisu, Daisuke & Otsu, Taisuke & Whang, Yoon-Jae, 2020.
"Inference on distribution functions under measurement error,"
Journal of Econometrics, Elsevier, vol. 215(1), pages 131-164.
- Karun Adusumilli & Taisuke Otsu & Yoon-Jae Whang, "undated". "Inference On Distribution Functions Under Measurement Error," Working Paper Series no108, Institute of Economic Research, Seoul National University.
- Karun Adusumilli & Taisuke Otsu & Yoon-Jae Whang, 2017. "Inference on distribution functions under measurement error," STICERD - Econometrics Paper Series 594, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
- Cao Xuan Phuong & Le Thi Hong Thuy & Vo Nguyen Tuyet Doan, 2022. "Nonparametric estimation of cumulative distribution function from noisy data in the presence of Berkson and classical errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 289-322, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
- Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
- Hao Dong & Taisuke Otsu & Luke Taylor, 2023.
"Bandwidth selection for nonparametric regression with errors-in-variables,"
Econometric Reviews, Taylor & Francis Journals, vol. 42(4), pages 393-419, April.
- Hao Dong & Taisuke Otsu & Luke Taylor, 2021. "Bandwidth Selection for Nonparametric Regression with Errors-in-Variables," Departmental Working Papers 2104, Southern Methodist University, Department of Economics.
- Hao Dong & Taisuke Otsu & Luke Taylor, 2022. "Bandwidth selection for nonparametric regression with errors-in-variables," STICERD - Econometrics Paper Series 620, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2023. "Bandwidth selection for nonparametric regression with errors-in-variables," LSE Research Online Documents on Economics 115551, London School of Economics and Political Science, LSE Library.
- Xiaodong Gong & Jiti Gao, 2015.
"Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia,"
Monash Econometrics and Business Statistics Working Papers
6/15, Monash University, Department of Econometrics and Business Statistics.
- Xiaodong Gong & Jiti Gao, 2017. "Nonparametric kernel estimation of the impact of tax policy on the demand for private health insurance in Australia," Monash Econometrics and Business Statistics Working Papers 7/17, Monash University, Department of Econometrics and Business Statistics.
- Gong, Xiaodong & Gao, Jiti, 2015. "Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia," IZA Discussion Papers 9265, Institute of Labor Economics (IZA).
- Julie McIntyre & Leonard Stefanski, 2011. "Density Estimation with Replicate Heteroscedastic Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 81-99, February.
- Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
- Julie McIntyre & Brent A. Johnson & Stephen M. Rappaport, 2018. "Monte Carlo methods for nonparametric regression with heteroscedastic measurement error," Biometrics, The International Biometric Society, vol. 74(2), pages 498-505, June.
- William Horrace & Christopher Parmeter, 2011.
"Semiparametric deconvolution with unknown error variance,"
Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
- William C. Horrace & Christopher F. Parmeter, 2008. "Semiparametric Deconvolution with Unknown Error Variance," Center for Policy Research Working Papers 104, Center for Policy Research, Maxwell School, Syracuse University.
- Martin L. Hazelton & Berwin A. Turlach, 2010. "Semiparametric Density Deconvolution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 91-108, March.
- Delaigle, A. & Gijbels, I., 2006. "Data-driven boundary estimation in deconvolution problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1965-1994, April.
- Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
- Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012.
"Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
- Shuowen Hu & D.S. Poskitt & Xibin Zhang, 2010. "Bayesian Adaptive Bandwidth Kernel Density Estimation of Irregular Multivariate Distributions," Monash Econometrics and Business Statistics Working Papers 21/10, Monash University, Department of Econometrics and Business Statistics.
- Fabienne Comte & Adeline Samson, 2012. "Nonparametric estimation of random-effects densities in linear mixed-effects model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 951-975, December.
- Camelia Minoiu & Sanjay Reddy, 2014. "Kernel density estimation on grouped data: the case of poverty assessment," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 12(2), pages 163-189, June.
- Hao Dong & Daniel L. Millimet, 2020.
"Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions,"
JRFM, MDPI, vol. 13(11), pages 1-24, November.
- Dong, Hao & Millimet, Daniel L., 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," IZA Discussion Papers 13893, Institute of Labor Economics (IZA).
- Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," Departmental Working Papers 2013, Southern Methodist University, Department of Economics.
- Parmeter, Christopher F., 2008. "The effect of measurement error on the estimated shape of the world distribution of income," Economics Letters, Elsevier, vol. 100(3), pages 373-376, September.
- Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
- Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
- Gao, H. Oliver & Johnson, Lynn Schooley, 2009. "Methods of analysis for vehicle soak time data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(8), pages 744-754, October.
- Peter Hall & Tapabrata Maiti, 2008. "Non‐parametric inference for clustered binary and count data when only summary information is available," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 725-738, September.
More about this item
Keywords
Bandwidth Ill-posed problem Inverse problem Kernel density estimation Mean integrated squared error Non-parametric curve estimation Statistical smoothing;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:15:p:1594-1602. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.