IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v77y2015i1p129-151.html
   My bibliography  Save this article

Sharp Bounds on Causal Effects under Sample Selection

Author

Listed:
  • Martin Huber
  • Giovanni Mellace

Abstract

type="main" xml:id="obes12056-abs-0001"> In many empirical problems, the evaluation of treatment effects is complicated by sample selection so that the outcome is only observed for a non-random subpopulation. In the absence of instruments and/or tight parametric assumptions, treatment effects are not point identified, but can be bounded under mild restrictions. Previous work on partial identification has primarily focused on the ‘always observed’ (irrespective of the treatment). This article complements those studies by considering further populations, namely the ‘compliers’ (observed only if treated) and the observed population. We derive sharp bounds under various assumptions and provide an empirical application to a school voucher experiment.

Suggested Citation

  • Martin Huber & Giovanni Mellace, 2015. "Sharp Bounds on Causal Effects under Sample Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 129-151, February.
  • Handle: RePEc:bla:obuest:v:77:y:2015:i:1:p:129-151
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/obes.2015.77.issue-1
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Charles F. Manski, 1997. "Monotone Treatment Response," Econometrica, Econometric Society, vol. 65(6), pages 1311-1334, November.
    2. Giovanni Mellace & Roberto Rocci, 2011. "Principal Stratification in sample selection problems with non normal error terms," CEIS Research Paper 194, Tor Vergata University, CEIS, revised 02 May 2011.
    3. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    4. Michael Lechner & Blaise Melly, 2007. "Earnings Effects of Training Programs," University of St. Gallen Department of Economics working paper series 2007 2007-28, Department of Economics, University of St. Gallen.
    5. Huber, Martin & Melly, Blaise, 2011. "Quantile Regression in the Presence of Sample Selection," Economics Working Paper Series 1109, University of St. Gallen, School of Economics and Political Science.
    6. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, September.
    7. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    8. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    9. Horowitz, Joel L & Manski, Charles F, 1995. "Identification and Robustness with Contaminated and Corrupted Data," Econometrica, Econometric Society, vol. 63(2), pages 281-302, March.
    10. Martin Huber, 2010. "Identification of average treatment effects in social experiments under different forms of attrition," University of St. Gallen Department of Economics working paper series 2010 2010-22, Department of Economics, University of St. Gallen.
    11. Whitney K. Newey, 2009. "Two-step series estimation of sample selection models," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 217-229, January.
    12. Gronau, Reuben, 1974. "Wage Comparisons-A Selectivity Bias," Journal of Political Economy, University of Chicago Press, vol. 82(6), pages 1119-1143, Nov.-Dec..
    13. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    14. Joshua Angrist & Eric Bettinger & Michael Kremer, 2006. "Long-Term Educational Consequences of Secondary School Vouchers: Evidence from Administrative Records in Colombia," American Economic Review, American Economic Association, vol. 96(3), pages 847-862, June.
    15. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(1), pages 33-58.
    16. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    17. Michael Gerfin & Martin Schellhorn, 2006. "Nonparametric bounds on the effect of deductibles in health care insurance on doctor visits – Swiss evidence," Health Economics, John Wiley & Sons, Ltd., vol. 15(9), pages 1011-1020, September.
    18. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, September.
    19. Brent Kreider & Steven C. Hill, 2009. "Partially Identifying Treatment Effects with an Application to Covering the Uninsured," Journal of Human Resources, University of Wisconsin Press, vol. 44(2).
    20. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    21. Charles F. Manski, 1989. "Anatomy of the Selection Problem," Journal of Human Resources, University of Wisconsin Press, vol. 24(3), pages 343-360.
    22. Leonardo Grilli & Fabrizia Mealli, 2008. "Nonparametric Bounds on the Causal Effect of University Studies on Job Opportunities Using Principal Stratification," Journal of Educational and Behavioral Statistics, , vol. 33(1), pages 111-130, March.
    23. Mealli, Fabrizia & Pacini, Barbara, 2008. "Comparing principal stratification and selection models in parametric causal inference with nonignorable missingness," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 507-516, December.
    24. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    25. Blanco, German & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2011. "Bounds on Quantile Treatment Effects of Job Corps on Participants' Wages," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103761, Agricultural and Applied Economics Association.
    26. Imai, Kosuke, 2008. "Sharp bounds on the causal effects in randomized experiments with "truncation-by-death"," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 144-149, February.
    27. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huber, Martin & Melly, Blaise, 2011. "Quantile Regression in the Presence of Sample Selection," Economics Working Paper Series 1109, University of St. Gallen, School of Economics and Political Science.
    2. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    3. German Blanco & Xuan Chen & Carlos A. Flores & Alfonso Flores-Lagunes, 2020. "Bounds on Average and Quantile Treatment Effects on Duration Outcomes Under Censoring, Selection, and Noncompliance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 901-920, October.
    4. Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
    5. Lutz Depenbusch & Pepijn Schreinemachers & Stuart Brown & Ralph Roothaert, 2022. "Impact and distributional effects of a home garden and nutrition intervention in Cambodia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(4), pages 865-881, August.
    6. Xiaolin Sun & Xueyan Zhao & D. S. Poskitt, 2024. "Partially Identified Heterogeneous Treatment Effect with Selection: An Application to Gender Gaps," Papers 2410.01159, arXiv.org, revised Oct 2024.
    7. Phillip Heiler, 2022. "Heterogeneous Treatment Effect Bounds under Sample Selection with an Application to the Effects of Social Media on Political Polarization," Papers 2209.04329, arXiv.org, revised Jul 2024.
    8. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.
    9. Martin Huber & Giovanni Mellace, 2010. "Sharp IV bounds on average treatment effects under endogeneity and noncompliance," University of St. Gallen Department of Economics working paper series 2010 2010-31, Department of Economics, University of St. Gallen.
    10. Daniel Brüggmann, 2020. "Women’s employment, income and divorce in West Germany: a causal approach," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 54(1), pages 1-22, December.
    11. Martin Huber & Blaise Melly, 2012. "A test of the conditional independence assumption in sample selection models," Working Papers 2012-11, Brown University, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Huber, 2014. "Treatment Evaluation in the Presence of Sample Selection," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 869-905, November.
    2. Michael Lechner & Blaise Melly, 2010. "Partial Idendification of Wage Effects of Training Programs," Working Papers 2010-8, Brown University, Department of Economics.
    3. Huber, Martin & Mellace, Giovanni, 2011. "Testing instrument validity in sample selection models," Economics Working Paper Series 1145, University of St. Gallen, School of Economics and Political Science.
    4. Martin Huber & Giovanni Mellace, 2014. "Testing exclusion restrictions and additive separability in sample selection models," Empirical Economics, Springer, vol. 47(1), pages 75-92, August.
    5. Michael Lechner & Blaise Melly, 2007. "Earnings Effects of Training Programs," University of St. Gallen Department of Economics working paper series 2007 2007-28, Department of Economics, University of St. Gallen.
    6. Martin Huber & Giovanni Mellace, 2010. "Sharp IV bounds on average treatment effects under endogeneity and noncompliance," University of St. Gallen Department of Economics working paper series 2010 2010-31, Department of Economics, University of St. Gallen.
    7. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    8. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    9. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    10. Victor Chernozhukov & Ivan Fernandez-Val & Siyi Luo, 2018. "Distribution regression with sample selection, with an application to wage decompositions in the UK," CeMMAP working papers CWP68/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Steinmayr, Andreas, 2014. "When a random sample is not random: Bounds on the effect of migration on household members left behind," Kiel Working Papers 1975, Kiel Institute for the World Economy (IfW Kiel).
    12. Martin Huber, 2012. "Identification of Average Treatment Effects in Social Experiments Under Alternative Forms of Attrition," Journal of Educational and Behavioral Statistics, , vol. 37(3), pages 443-474, June.
    13. Christelis, Dimitris & Messina, Julián, 2019. "Partial Identification of Population Average and Quantile Treatment Effects in Observational Data under Sample Selection," IDB Publications (Working Papers) 9520, Inter-American Development Bank.
    14. Kate Ho & Adam M. Rosen, 2015. "Partial Identification in Applied Research: Benefits and Challenges," NBER Working Papers 21641, National Bureau of Economic Research, Inc.
    15. Claudia Olivetti & Barbara Petrongolo, 2008. "Unequal Pay or Unequal Employment? A Cross-Country Analysis of Gender Gaps," Journal of Labor Economics, University of Chicago Press, vol. 26(4), pages 621-654, October.
    16. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
    18. Aizawa, T.;, 2019. "Reviewing the Existing Evidence of the Conditional Cash Transfer in India through the Partial Identification Approach," Health, Econometrics and Data Group (HEDG) Working Papers 19/24, HEDG, c/o Department of Economics, University of York.
    19. Michela Bia & Martin Huber & Lukáš Lafférs, 2024. "Double Machine Learning for Sample Selection Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 958-969, July.
    20. Martin Huber & Anna Solovyeva, 2020. "Direct and Indirect Effects under Sample Selection and Outcome Attrition," Econometrics, MDPI, vol. 8(4), pages 1-25, December.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:77:y:2015:i:1:p:129-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.