IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v42y2021i5-6p711-736.html
   My bibliography  Save this article

On the Estimation of Periodicity or Almost Periodicity in Inhomogeneous Gamma Point‐Process Data

Author

Listed:
  • Rodrigo Saul Gaitan
  • Keh‐Shin Lii

Abstract

The non‐homogeneous Poisson process (NHPP) and the renewal process (RP) are two stochastic point process models that are commonly used to describe the pattern of repeated occurrence data. An inhomogeneous Gamma process (IGP) is a point process model that generalizes both the NHPP and a particular RP, commonly referred to as a Gamma renewal process, which has interarrival times that are i.i.d. gamma random variables with unit scale parameter and shape parameter κ>0. This article focuses on a particular class of the IGP which has a periodic or almost periodic baseline intensity function and a shape parameter κ∈ℕ. This model deals with point events that show a pattern of periodicity or almost periodicity. Consistent estimators of unknown parameters are constructed mainly by the Bartlett periodogram. Simulation results that support theoretical findings are provided.

Suggested Citation

  • Rodrigo Saul Gaitan & Keh‐Shin Lii, 2021. "On the Estimation of Periodicity or Almost Periodicity in Inhomogeneous Gamma Point‐Process Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 711-736, September.
  • Handle: RePEc:bla:jtsera:v:42:y:2021:i:5-6:p:711-736
    DOI: 10.1111/jtsa.12585
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12585
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12585?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rodrigo Saul Gaitan & Keh-Shin Lii, 2021. "The first and second order moment structure of an inhomogeneous gamma point process," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(3), pages 582-593, February.
    2. P. A. W Lewis & G. S. Shedler, 1979. "Simulation of nonhomogeneous poisson processes by thinning," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(3), pages 403-413, September.
    3. Nan Shao & Keh‐Shin Lii, 2011. "Modelling non‐homogeneous Poisson processes with almost periodic intensity functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 99-122, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Chen & Joseph Glaz, 2016. "Multiple Window Scan Statistics for Two Dimensional Poisson Processes," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 967-977, December.
    2. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    3. Mohammadi, M. & Rezakhah, S. & Modarresi, N., 2020. "Semi-Lévy driven continuous-time GARCH process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    4. Canyakmaz, Caner & Özekici, Süleyman & Karaesmen, Fikri, 2019. "An inventory model where customer demand is dependent on a stochastic price process," International Journal of Production Economics, Elsevier, vol. 212(C), pages 139-152.
    5. Xin-Yu Tian & Xincheng Shi & Cheng Peng & Xiao-Jian Yi, 2021. "A Reliability Growth Process Model with Time-Varying Covariates and Its Application," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    6. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    7. Julio A. Crego, 2017. "Short Selling Ban and Intraday Dynamics," Working Papers wp2018_1715, CEMFI.
    8. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    9. Lu Shaochuan, 2023. "Scalable Bayesian Multiple Changepoint Detection via Auxiliary Uniformisation," International Statistical Review, International Statistical Institute, vol. 91(1), pages 88-113, April.
    10. Ji, Jingru & Wang, Donghua & Xu, Dinghai & Xu, Chi, 2020. "Combining a self-exciting point process with the truncated generalized Pareto distribution: An extreme risk analysis under price limits," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 52-70.
    11. Ivan Jericevich & Dharmesh Sing & Tim Gebbie, 2021. "CoinTossX: An open-source low-latency high-throughput matching engine," Papers 2102.10925, arXiv.org.
    12. Sobin Joseph & Shashi Jain, 2023. "A neural network based model for multi-dimensional nonlinear Hawkes processes," Papers 2303.03073, arXiv.org.
    13. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    14. Huh, Woonghee Tim & Lee, Jaywon & Park, Heesang & Park, Kun Soo, 2019. "The potty parity problem: Towards gender equality at restrooms in business facilities," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    15. Kyungsub Lee, 2023. "Multi-kernel property in high-frequency price dynamics under Hawkes model," Papers 2302.11822, arXiv.org.
    16. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
    17. Hermann, Simone & Ickstadt, Katja & Müller, Christine H., 2018. "Bayesian prediction for a jump diffusion process – With application to crack growth in fatigue experiments," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 83-96.
    18. Frederic Paik Schoenberg & Marc Hoffmann & Ryan J. Harrigan, 2019. "A recursive point process model for infectious diseases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1271-1287, October.
    19. Ran Liu & Michael E. Kuhl & Yunan Liu & James R. Wilson, 2019. "Modeling and Simulation of Nonstationary Non-Poisson Arrival Processes," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 347-366, April.
    20. Abhinav Garg & Naman Shukla & Lavanya Marla & Sriram Somanchi, 2021. "Distribution Shift in Airline Customer Behavior during COVID-19," Papers 2111.14938, arXiv.org, revised Dec 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:42:y:2021:i:5-6:p:711-736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.