IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.14938.html
   My bibliography  Save this paper

Distribution Shift in Airline Customer Behavior during COVID-19

Author

Listed:
  • Abhinav Garg
  • Naman Shukla
  • Lavanya Marla
  • Sriram Somanchi

Abstract

Traditional AI approaches in customized (personalized) contextual pricing applications assume that the data distribution at the time of online pricing is similar to that observed during training. However, this assumption may be violated in practice because of the dynamic nature of customer buying patterns, particularly due to unanticipated system shocks such as COVID-19. We study the changes in customer behavior for a major airline during the COVID-19 pandemic by framing it as a covariate shift and concept drift detection problem. We identify which customers changed their travel and purchase behavior and the attributes affecting that change using (i) Fast Generalized Subset Scanning and (ii) Causal Forests. In our experiments with simulated and real-world data, we present how these two techniques can be used through qualitative analysis.

Suggested Citation

  • Abhinav Garg & Naman Shukla & Lavanya Marla & Sriram Somanchi, 2021. "Distribution Shift in Airline Customer Behavior during COVID-19," Papers 2111.14938, arXiv.org, revised Dec 2021.
  • Handle: RePEc:arx:papers:2111.14938
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.14938
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. A. W Lewis & G. S. Shedler, 1979. "Simulation of nonhomogeneous poisson processes by thinning," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(3), pages 403-413, September.
    2. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
    3. Sheth, Jagdish, 2020. "Impact of Covid-19 on consumer behavior: Will the old habits return or die?," Journal of Business Research, Elsevier, vol. 117(C), pages 280-283.
    4. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    5. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    6. P. A. W. Lewis & G. S. Shedler, 1979. "Simulation of Nonhomogeneous Poisson Processes with Degree-Two Exponential Polynomial Rate Function," Operations Research, INFORMS, vol. 27(5), pages 1026-1040, October.
    7. Adam Bockelie & Peter Belobaba, 2017. "Incorporating ancillary services in airline passenger choice models," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(6), pages 553-568, December.
    8. Kris Johnson Ferreira & Bin Hong Alex Lee & David Simchi-Levi, 2016. "Analytics for an Online Retailer: Demand Forecasting and Price Optimization," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 69-88, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    2. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Ay, Jean-Sauveur & Le Gallo, Julie, 2021. "The Signaling Values of Nested Wine Names," Working Papers 321851, American Association of Wine Economists.
    4. Chen, Ruoyu & Jiang, Hanchen & Quintero, Luis E., 2023. "Measuring the value of rent stabilization and understanding its implications for racial inequality: Evidence from New York City," Regional Science and Urban Economics, Elsevier, vol. 103(C).
    5. Dangxing Chen & Luyao Zhang, 2023. "Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance," Papers 2301.07060, arXiv.org.
    6. Ballestar, María Teresa & Mir, Miguel Cuerdo & Pedrera, Luis Miguel Doncel & Sainz, Jorge, 2024. "Effectiveness of tutoring at school: A machine learning evaluation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    7. Daniel Levy & Tamir Mayer & Alon Raviv, 2020. "Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers," Working Papers hal-02488796, HAL.
    8. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    9. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    10. Arenas, Andreu & Calsamiglia, Caterina, 2022. "Gender Differences in High-Stakes Performance and College Admission Policies," IZA Discussion Papers 15550, Institute of Labor Economics (IZA).
    11. Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," MPRA Paper 110703, University Library of Munich, Germany.
    12. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    14. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    15. Hannes Wallimann & Silvio Sticher, 2023. "On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement," Papers 2304.11888, arXiv.org.
    16. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    17. Jesus Fernandez-Villaverde, 2020. "Simple Rules for a Complex World with Arti?cial Intelligence," PIER Working Paper Archive 20-010, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    18. Carlos Fern'andez-Lor'ia & Foster Provost & Jesse Anderton & Benjamin Carterette & Praveen Chandar, 2020. "A Comparison of Methods for Treatment Assignment with an Application to Playlist Generation," Papers 2004.11532, arXiv.org, revised Apr 2022.
    19. Dang,Hai-Anh H. & Kilic,Talip & Carletto,Calogero & Abanokova,Kseniya, 2021. "Poverty Imputation in Contexts without Consumption Data : A Revisit with Further Refinements," Policy Research Working Paper Series 9838, The World Bank.
    20. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.14938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.