IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v179y2018icp83-96.html
   My bibliography  Save this article

Bayesian prediction for a jump diffusion process – With application to crack growth in fatigue experiments

Author

Listed:
  • Hermann, Simone
  • Ickstadt, Katja
  • Müller, Christine H.

Abstract

In many fields of technological developments, understanding and controlling material fatigue is an important point of interest. This article is concerned with statistical modeling of the damage process of prestressed concrete under low cyclic load. A crack width process is observed which exhibits jumps with increasing frequency. Firstly, these jumps are modeled using a Poisson process where two intensity functions are presented and compared. Secondly, based on the modeled jump process, a stochastic process for the crack width is considered through a stochastic differential equation (SDE). It turns out that this SDE has an explicit solution. For both modeling steps, a Bayesian estimation and prediction procedure is presented.

Suggested Citation

  • Hermann, Simone & Ickstadt, Katja & Müller, Christine H., 2018. "Bayesian prediction for a jump diffusion process – With application to crack growth in fatigue experiments," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 83-96.
  • Handle: RePEc:eee:reensy:v:179:y:2018:i:c:p:83-96
    DOI: 10.1016/j.ress.2016.08.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016303702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.08.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Casella, Bruno & Roberts, Gareth O., 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," MPRA Paper 95217, University Library of Munich, Germany.
    2. P. A. W Lewis & G. S. Shedler, 1979. "Simulation of nonhomogeneous poisson processes by thinning," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(3), pages 403-413, September.
    3. Bruno Casella & Gareth O. Roberts, 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 449-473, September.
    4. Yasutaka Shimizu & Nakahiro Yoshida, 2006. "Estimation of Parameters for Diffusion Processes with Jumps from Discrete Observations," Statistical Inference for Stochastic Processes, Springer, vol. 9(3), pages 227-277, October.
    5. Yu, Jun-Wu & Tian, Guo-Liang & Tang, Man-Lai, 2007. "Predictive analyses for nonhomogeneous Poisson processes with power law using Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4254-4268, May.
    6. Yuan, X.-X. & Mao, D. & Pandey, M.D., 2009. "A Bayesian approach to modeling and predicting pitting flaws in steam generator tubes," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1838-1847.
    7. Kay Giesecke & Dmitry Smelov, 2013. "Exact Sampling of Jump Diffusions," Operations Research, INFORMS, vol. 61(4), pages 894-907, August.
    8. Antonio Pievatolo & Fabrizio Ruggeri, 2004. "Bayesian reliability analysis of complex repairable systems," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 20(3), pages 253-264, July.
    9. Simone Hermann & Katja Ickstadt & Christine H. Müller, 2016. "Bayesian prediction of crack growth based on a hierarchical diffusion model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(4), pages 494-510, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Xuxue & Cai, Wenjun & Li, Mingyang, 2021. "A hierarchical modeling approach for degradation data with mixed-type covariates and latent heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Jakobsen, Nina Munkholt & Sørensen, Michael, 2019. "Estimating functions for jump–diffusions," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3282-3318.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    2. Wanmo Kang & Jong Mun Lee, 2019. "Unbiased Sensitivity Estimation of One-Dimensional Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 334-353, February.
    3. Herrmann, Samuel & Massin, Nicolas, 2023. "Exact simulation of the first passage time through a given level of jump diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 553-576.
    4. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    5. K. Giesecke & H. Kakavand & M. Mousavi, 2011. "Exact Simulation of Point Processes with Stochastic Intensities," Operations Research, INFORMS, vol. 59(5), pages 1233-1245, October.
    6. Flávio B. Gonçalves & Gareth O. Roberts, 2014. "Exact Simulation Problems for Jump-Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 907-930, December.
    7. Yehuda Arav & Eyal Fattal & Ziv Klausner, 2022. "Is the Increased Transmissibility of SARS-CoV-2 Variants Driven by within or Outside-Host Processes?," Mathematics, MDPI, vol. 10(19), pages 1-17, September.
    8. Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
    9. Kay Giesecke & Dmitry Smelov, 2013. "Exact Sampling of Jump Diffusions," Operations Research, INFORMS, vol. 61(4), pages 894-907, August.
    10. Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
    11. Rudiger Frey & Verena Kock, 2021. "Deep Neural Network Algorithms for Parabolic PIDEs and Applications in Insurance Mathematics," Papers 2109.11403, arXiv.org, revised Sep 2021.
    12. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    13. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    14. Jie Chen & Joseph Glaz, 2016. "Multiple Window Scan Statistics for Two Dimensional Poisson Processes," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 967-977, December.
    15. Mohammadi, M. & Rezakhah, S. & Modarresi, N., 2020. "Semi-Lévy driven continuous-time GARCH process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    16. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    17. Schmisser, Émeline, 2019. "Non parametric estimation of the diffusion coefficients of a diffusion with jumps," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5364-5405.
    18. Canyakmaz, Caner & Özekici, Süleyman & Karaesmen, Fikri, 2019. "An inventory model where customer demand is dependent on a stochastic price process," International Journal of Production Economics, Elsevier, vol. 212(C), pages 139-152.
    19. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    20. Xin-Yu Tian & Xincheng Shi & Cheng Peng & Xiao-Jian Yi, 2021. "A Reliability Growth Process Model with Time-Varying Covariates and Its Application," Mathematics, MDPI, vol. 9(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:179:y:2018:i:c:p:83-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.