IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v18y2016i4d10.1007_s11009-016-9484-9.html
   My bibliography  Save this article

Multiple Window Scan Statistics for Two Dimensional Poisson Processes

Author

Listed:
  • Jie Chen

    (University of Massachusetts Boston)

  • Joseph Glaz

    (University of Connecticut)

Abstract

In this article, approximations for the distribution of multiple window scan statistics for Poisson Processes on a two dimensional rectangular region are derived, for the conditional and unconditional model. These multiple window scan statistics are based on the minimum of p-values and repeated minimum p-values of fixed window scan statistics. Numerical results are presented to evaluate the performance of these multiple window scan statistics and compare their power with fixed window scan statistics for selected local type alternatives.

Suggested Citation

  • Jie Chen & Joseph Glaz, 2016. "Multiple Window Scan Statistics for Two Dimensional Poisson Processes," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 967-977, December.
  • Handle: RePEc:spr:metcap:v:18:y:2016:i:4:d:10.1007_s11009-016-9484-9
    DOI: 10.1007/s11009-016-9484-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-016-9484-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-016-9484-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. A. W Lewis & G. S. Shedler, 1979. "Simulation of nonhomogeneous poisson processes by thinning," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(3), pages 403-413, September.
    2. G. Haiman & C. Preda, 2002. "A New Method for Estimating the Distribution of Scan Statistics for a Two-Dimensional Poisson Process," Methodology and Computing in Applied Probability, Springer, vol. 4(4), pages 393-407, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    2. Mohammadi, M. & Rezakhah, S. & Modarresi, N., 2020. "Semi-Lévy driven continuous-time GARCH process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    3. Canyakmaz, Caner & Özekici, Süleyman & Karaesmen, Fikri, 2019. "An inventory model where customer demand is dependent on a stochastic price process," International Journal of Production Economics, Elsevier, vol. 212(C), pages 139-152.
    4. Xin-Yu Tian & Xincheng Shi & Cheng Peng & Xiao-Jian Yi, 2021. "A Reliability Growth Process Model with Time-Varying Covariates and Its Application," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    5. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    6. Julio A. Crego, 2017. "Short Selling Ban and Intraday Dynamics," Working Papers wp2018_1715, CEMFI.
    7. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    8. Lu Shaochuan, 2023. "Scalable Bayesian Multiple Changepoint Detection via Auxiliary Uniformisation," International Statistical Review, International Statistical Institute, vol. 91(1), pages 88-113, April.
    9. Ji, Jingru & Wang, Donghua & Xu, Dinghai & Xu, Chi, 2020. "Combining a self-exciting point process with the truncated generalized Pareto distribution: An extreme risk analysis under price limits," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 52-70.
    10. Ivan Jericevich & Dharmesh Sing & Tim Gebbie, 2021. "CoinTossX: An open-source low-latency high-throughput matching engine," Papers 2102.10925, arXiv.org.
    11. Sobin Joseph & Shashi Jain, 2023. "A neural network based model for multi-dimensional nonlinear Hawkes processes," Papers 2303.03073, arXiv.org.
    12. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    13. Huh, Woonghee Tim & Lee, Jaywon & Park, Heesang & Park, Kun Soo, 2019. "The potty parity problem: Towards gender equality at restrooms in business facilities," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    14. Kyungsub Lee, 2023. "Multi-kernel property in high-frequency price dynamics under Hawkes model," Papers 2302.11822, arXiv.org.
    15. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
    16. Hermann, Simone & Ickstadt, Katja & Müller, Christine H., 2018. "Bayesian prediction for a jump diffusion process – With application to crack growth in fatigue experiments," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 83-96.
    17. Frederic Paik Schoenberg & Marc Hoffmann & Ryan J. Harrigan, 2019. "A recursive point process model for infectious diseases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1271-1287, October.
    18. Ran Liu & Michael E. Kuhl & Yunan Liu & James R. Wilson, 2019. "Modeling and Simulation of Nonstationary Non-Poisson Arrival Processes," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 347-366, April.
    19. Abhinav Garg & Naman Shukla & Lavanya Marla & Sriram Somanchi, 2021. "Distribution Shift in Airline Customer Behavior during COVID-19," Papers 2111.14938, arXiv.org, revised Dec 2021.
    20. Andreia Monteiro & Raquel Menezes & Maria Eduarda Silva, 2021. "Modelling informative time points: an evolutionary process approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 364-382, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:18:y:2016:i:4:d:10.1007_s11009-016-9484-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.