IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v59y2010i5p889-904.html
   My bibliography  Save this article

Simultaneous confidence bands in curve prediction applied to load curves

Author

Listed:
  • J. M. Azaïs
  • S. Bercu
  • J. C. Fort
  • A. Lagnoux
  • P. Lé

Abstract

Summary. Considering the problem of predicting the whole annual load curve of some Electricité de France customers from easily available explanatory variables, we derive simultaneous confidence bands for this prediction. The methodology that is developed, which can be applied to numerous problems, uses results on the maximum of Gaussian sequences. The paper ends with the application to Electricité de France's problem.

Suggested Citation

  • J. M. Azaïs & S. Bercu & J. C. Fort & A. Lagnoux & P. Lé, 2010. "Simultaneous confidence bands in curve prediction applied to load curves," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 889-904, November.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:5:p:889-904
    DOI: 10.1111/j.1467-9876.2010.00727.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2010.00727.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2010.00727.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marek Brabec & Ondřej Konár & Marek Malý & Emil Pelikán & Jiří Vondráček, 2009. "A statistical model for natural gas standardized load profiles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 123-139, February.
    2. Peter Hall, 2004. "Nonparametric confidence intervals for receiver operating characteristic curves," Biometrika, Biometrika Trust, vol. 91(3), pages 743-750, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoniadis, Anestis & Brossat, Xavier & Cugliari, Jairo & Poggi, Jean-Michel, 2016. "A prediction interval for a function-valued forecast model: Application to load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 939-947.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soltanisarvestani, A. & Safavi, A.A., 2021. "Modeling unaccounted-for gas among residential natural gas consumers using a comprehensive fuzzy cognitive map," Utilities Policy, Elsevier, vol. 72(C).
    2. Lopez-de-Ullibarri, Ignacio & Cao, Ricardo & Cadarso-Suarez, Carmen & Lado, Maria J., 2008. "Nonparametric estimation of conditional ROC curves: Application to discrimination tasks in computerized detection of early breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2623-2631, January.
    3. Eugene Demidenko, 2012. "Confidence intervals and bands for the binormal ROC curve revisited," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 67-79, March.
    4. Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
    5. Òscar Jordà & Alan M. Taylor, 2011. "Performance Evaluation of Zero Net-Investment Strategies," NBER Working Papers 17150, National Bureau of Economic Research, Inc.
    6. Kaushik Ghosh & Ram Tiwari, 2007. "Empirical process approach to some two-sample problems based on ranked set samples," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 757-787, December.
    7. Sarah E. Heaps & Malcolm Farrow & Kevin J. Wilson, 2020. "Identifying the effect of public holidays on daily demand for gas," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 471-492, February.
    8. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    9. Kajal Lahiri & Liu Yang, 2018. "Confidence Bands for ROC Curves With Serially Dependent Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 115-130, January.
    10. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
    11. Marta P. Fernandes & Joaquim L. Viegas & Susana M. Vieira & João M. C. Sousa, 2017. "Segmentation of Residential Gas Consumers Using Clustering Analysis," Energies, MDPI, vol. 10(12), pages 1-26, December.
    12. M. Brabec & O. Kon�r & M. Malý & I. Kasanický & E. Pelik�n, 2015. "Statistical models for disaggregation and reaggregation of natural gas consumption data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 921-937, May.
    13. Sen, Doruk & Günay, M. Erdem & Tunç, K.M. Murat, 2019. "Forecasting annual natural gas consumption using socio-economic indicators for making future policies," Energy, Elsevier, vol. 173(C), pages 1106-1118.
    14. Yunguo Lu & Lin Zhang, 2023. "Environmental information disclosure and firm production: evidence from the estimated efficiency of publicly listed firms in China," Journal of Productivity Analysis, Springer, vol. 59(1), pages 99-119, February.
    15. Gong, Yun & Peng, Liang & Qi, Yongcheng, 2010. "Smoothed jackknife empirical likelihood method for ROC curve," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1520-1531, July.
    16. Dag Kolsrud, 2007. "Time-simultaneous prediction band for a time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 171-188.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:5:p:889-904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.