Bayesian estimation of constrained mean-covariance of normal distributions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2022.109745
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ledoit, Olivier & Wolf, Michael, 2004.
"A well-conditioned estimator for large-dimensional covariance matrices,"
Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
- Ledoit, Olivier & Wolf, Michael, 2000. "A well conditioned estimator for large dimensional covariance matrices," DES - Working Papers. Statistics and Econometrics. WS 10087, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Peter D. Hoff, 2009. "A hierarchical eigenmodel for pooled covariance estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 971-992, November.
- Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
- Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019.
"A multiple testing approach to the regularisation of large sample correlation matrices,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2014. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," CESifo Working Paper Series 4834, CESifo.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2015. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," Working Papers 764, Queen Mary University of London, School of Economics and Finance.
- Natalia Bailey & Vanessa Smith & M. Hashem Pesaran, 2014. "A multiple testing approach to the regularisation of large sample correlation matrices," Cambridge Working Papers in Economics 1413, Faculty of Economics, University of Cambridge.
- Tae-Hwy Lee & Ekaterina Seregina, 2024.
"Optimal Portfolio Using Factor Graphical Lasso,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 670-695.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Optimal Portfolio Using Factor Graphical Lasso," Working Papers 202025, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2023. "Optimal Portfolio Using Factor Graphical Lasso," Working Papers 202302, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Optimal Portfolio Using Factor Graphical Lasso," Papers 2011.00435, arXiv.org, revised Apr 2023.
- Tae-Hwy Lee & Ekaterina Seregina, 2020.
"Learning from Forecast Errors: A New Approach to Forecast Combination,"
Working Papers
202024, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combinations," Papers 2011.02077, arXiv.org, revised May 2021.
- Jingying Yang, 2024. "Element Aggregation for Estimation of High-Dimensional Covariance Matrices," Mathematics, MDPI, vol. 12(7), pages 1-16, March.
- Chen, Jia & Li, Degui & Linton, Oliver, 2019.
"A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
- Jia Chen & Degui Li & Oliver Linton, 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Discussion Papers 18/14, Department of Economics, University of York.
- Chen, J. & Li, D. & Linton, O., 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Cambridge Working Papers in Economics 1876, Faculty of Economics, University of Cambridge.
- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
- Yuki Ikeda & Tatsuya Kubokawa, 2015. "Linear Shrinkage Estimation of Large Covariance Matrices with Use of Factor Models," CIRJE F-Series CIRJE-F-958, CIRJE, Faculty of Economics, University of Tokyo.
- M Hashem Pesaran & Takashi Yamagata, 2012.
"Testing CAPM with a Large Number of Assets,"
Discussion Papers
12/05, Department of Economics, University of York.
- Pesaran, M. Hashem & Yamagata, Takashi, 2012. "Testing CAPM with a Large Number of Assets," IZA Discussion Papers 6469, Institute of Labor Economics (IZA).
- Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022.
"Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization,"
Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.
- Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2016. "Spectrally-corrected estimation for high-dimensional markowitz mean-variance optimization," Documentos de Trabajo del ICAE 2017-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Bai, Z. & Li, H. & McAleer, M.J. & Wong, W.-K., 2016. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometric Institute Research Papers EI2016-20, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2016. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Tinbergen Institute Discussion Papers 16-025/III, Tinbergen Institute.
- Jianqing Fan & Yuan Liao & Martina Mincheva, 2013.
"Large covariance estimation by thresholding principal orthogonal complements,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
- Fan, Jianqing & Liao, Yuan & Mincheva, Martina, 2011. "Large covariance estimation by thresholding principal orthogonal complements," MPRA Paper 38697, University Library of Munich, Germany.
- Ledoit, Olivier & Wolf, Michael, 2015.
"Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions,"
Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
- Olivier Ledoit & Michael Wolf, 2013. "Spectrum estimation: a unified framework for covariance matrix estimation and PCA in large dimensions," ECON - Working Papers 105, Department of Economics - University of Zurich, revised Jul 2013.
- Alexander Chudik & M. Hashem Pesaran, 2016.
"Theory And Practice Of Gvar Modelling,"
Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
- Alexander Chudik & M. Hashem Pesaran, 2014. "Theory and Practice of GVAR Modeling," Cambridge Working Papers in Economics 1408, Faculty of Economics, University of Cambridge.
- Alexander Chudik & M. Hashem Pesaran, 2014. "Theory and practice of GVAR modeling," Globalization Institute Working Papers 180, Federal Reserve Bank of Dallas.
- Alexander Chudik & M. Hashem Pesaran, 2014. "Theory and Practice of GVAR Modeling," CESifo Working Paper Series 4807, CESifo.
- M Hashem Pesaran & Takashi Yamagata, 2024.
"Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 407-460.
- M. Hashem Pesaran & Takashi Yamagata, 2017. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," Discussion Papers 17/04, Department of Economics, University of York.
- M. Hashem Pesaran & Takashi Yamagata, 2017. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," CESifo Working Paper Series 6432, CESifo.
- Taras Bodnar & Nestor Parolya & Erik Thorsen, 2021. "Dynamic Shrinkage Estimation of the High-Dimensional Minimum-Variance Portfolio," Papers 2106.02131, arXiv.org, revised Nov 2021.
- Esra Ulasan & A. Özlem Önder, 2023. "Large portfolio optimisation approaches," Journal of Asset Management, Palgrave Macmillan, vol. 24(6), pages 485-497, October.
- Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014.
"On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix,"
Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
- Taras Bodnar & Arjun K. Gupta & Nestor Parolya, 2013. "On the Strong Convergence of the Optimal Linear Shrinkage Estimator for Large Dimensional Covariance Matrix," Papers 1308.2608, arXiv.org, revised Jun 2014.
- Steland, Ansgar & von Sachs, Rainer, 2016. "Asymptotics for High–Dimensional Covariance Matrices and Quadratic Forms with Applications to the Trace Functional and Shrinkage," LIDAM Discussion Papers ISBA 2016038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Chen, Binbin & Huang, Shih-Feng & Pan, Guangming, 2015. "High dimensional mean–variance optimization through factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 140-159.
- Ruili Sun & Tiefeng Ma & Shuangzhe Liu, 2018. "A Stein-type shrinkage estimator of the covariance matrix for portfolio selections," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 931-952, November.
More about this item
Keywords
Structured covariance; Shrinkage inverse wishart; Normal-inverse gamma;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:194:y:2023:i:c:s0167715222002589. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.