IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1198.html
   My bibliography  Save this paper

Jeffreys Prior Analysis of the Simultaneous Equations Model in the Case with n+1 Endogenous Variables

Author

Abstract

This paper analyzes the behavior of posterior distributions under the Jeffreys prior in a simultaneous equations model. The case under study is that of a general limited information setup with n + 1 endogenous variables. The Jeffreys prior is shown to give rise to a marginal posterior density which has Cauchy-like tails similar to that exhibited by the exact finite sample distribution of the corresponding LIML estimator. A stronger correspondence is established in the special case of a just-identified orthonormal canonical model, where the posterior density under the Jeffreys prior is shown to have the same functional form as the density of the finite sample distribution of the LIML estimator. The work here generalizes that of Chao and Phillips (1997), which gives analogous results for the special case of two endogenous variables.

Suggested Citation

  • John C. Chao & Peter C.B. Phillips, 1998. "Jeffreys Prior Analysis of the Simultaneous Equations Model in the Case with n+1 Endogenous Variables," Cowles Foundation Discussion Papers 1198, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1198
    Note: CFP 1107.
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d11/d1198.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, Peter C B, 1985. "The Exact Distribution of LIML: II," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(1), pages 21-36, February.
    2. Zellner, Arnold, 1970. "Estimation of Regression Relationships Containing Unobservable Independent Variables," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 11(3), pages 441-454, October.
    3. Dreze, Jacques H. & Richard, Jean-Francois, 1983. "Bayesian analysis of simultaneous equation systems," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 9, pages 517-598, Elsevier.
    4. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(2), pages 181-240, August.
    5. Dreze, Jacques H, 1976. "Bayesian Limited Information Analysis of the Simultaneous Equations Model," Econometrica, Econometric Society, vol. 44(5), pages 1045-1075, September.
    6. Phillips, Peter C B, 1994. "Some Exact Distribution Theory for Maximum Likelihood Estimators of Cointegrating Coefficients in Error Correction Models," Econometrica, Econometric Society, vol. 62(1), pages 73-93, January.
    7. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    8. Kleibergen, Frank & van Dijk, Herman K., 1994. "On the Shape of the Likelihood/Posterior in Cointegration Models," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 514-551, August.
    9. Phillips, P C B, 1980. "The Exact Distribution of Instrumental Variable Estimators in an Equation Containing n + 1 Endogenous Variables," Econometrica, Econometric Society, vol. 48(4), pages 861-878, May.
    10. Constantine, A. G. & Muirhead, R. J., 1976. "Asymptotic expansions for distributions of latent roots in multivariate analysis," Journal of Multivariate Analysis, Elsevier, vol. 6(3), pages 369-391, September.
    11. Poirier, Dale, 1994. "Jeffreys' prior for logit models," Journal of Econometrics, Elsevier, vol. 63(2), pages 327-339, August.
    12. Mariano, Roberto S, 1982. "Analytical Small-Sample Distribution Theory in Econometrics: The Simultaneous-Equations Case," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(3), pages 503-533, October.
    13. Phillips, P C B, 1991. "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 333-364, Oct.-Dec..
    14. Hillier, Grant H, 1990. "On the Normalization of Structural Equations: Properties of Direct Estimators," Econometrica, Econometric Society, vol. 58(5), pages 1181-1194, September.
    15. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(6), pages 701-743, December.
    16. Mara L. McLaren, 1976. "Coefficients of the Zonal Polynomials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(1), pages 82-87, March.
    17. Choi, In & Phillips, Peter C. B., 1992. "Asymptotic and finite sample distribution theory for IV estimators and tests in partially identified structural equations," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 113-150.
    18. Chao, J. C. & Phillips, P. C. B., 1998. "Posterior distributions in limited information analysis of the simultaneous equations model using the Jeffreys prior," Journal of Econometrics, Elsevier, vol. 87(1), pages 49-86, August.
    19. Maddala, G S, 1976. "Weak Priors and Sharp Posteriors in Simultaneous Equation Models," Econometrica, Econometric Society, vol. 44(2), pages 345-351, March.
    20. Phillips, P.C.B., 1983. "Exact small sample theory in the simultaneous equations model," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 8, pages 449-516, Elsevier.
    21. Peter C.B. Phillips, 1981. "Marginal Densities of Instrumental Variable Estimators in the General Single Equation Case," Cowles Foundation Discussion Papers 609, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radchenko, Stanislav, 2005. "Lags in the response of gasoline prices to changes in crude oil prices: The role of short-term and long-term shocks," Energy Economics, Elsevier, vol. 27(4), pages 573-602, July.
    2. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    3. Belén Pérez-Sánchez & Martín González & Carmen Perea & Jose J. López-Espín, 2021. "A New Computational Method for Estimating Simultaneous Equations Models Using Entropy as a Parameter Criteria," Mathematics, MDPI, vol. 9(7), pages 1-9, March.
    4. Radchenko, Stanislav & Tsurumi, Hiroki, 2006. "Limited information Bayesian analysis of a simultaneous equation with an autocorrelated error term and its application to the U.S. gasoline market," Journal of Econometrics, Elsevier, vol. 133(1), pages 31-49, July.
    5. Stanislav Radchenko, 2004. "Lags in the response of gasoline prices to changes in crude oil," Econometrics 0406001, University Library of Munich, Germany.
    6. Dale J. Poirier & Gary Koop & Justin Tobias, 2005. "Semiparametric Bayesian inference in multiple equation models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(6), pages 723-747.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John C. Chao & Peter C.B. Phillips, 1996. "Bayesian Posterior Distributions in Limited Information Analysis of the Simultaneous Equations Model Using the Jeffreys Prior," Cowles Foundation Discussion Papers 1137, Cowles Foundation for Research in Economics, Yale University.
    2. Chao, J. C. & Phillips, P. C. B., 1998. "Posterior distributions in limited information analysis of the simultaneous equations model using the Jeffreys prior," Journal of Econometrics, Elsevier, vol. 87(1), pages 49-86, August.
    3. van Dijk, H.K., 2002. "On Bayesian structural inference in a simultaneous equation model," Econometric Institute Research Papers EI 2002-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    5. Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
    6. Hoogerheide, Lennart & Kleibergen, Frank & van Dijk, Herman K., 2007. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Journal of Econometrics, Elsevier, vol. 138(1), pages 63-103, May.
    7. Chuanming Gao & Kajal Lahiri, 2000. "A Comparison of Some Recent Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometric Society World Congress 2000 Contributed Papers 0230, Econometric Society.
    8. Radchenko, Stanislav & Tsurumi, Hiroki, 2006. "Limited information Bayesian analysis of a simultaneous equation with an autocorrelated error term and its application to the U.S. gasoline market," Journal of Econometrics, Elsevier, vol. 133(1), pages 31-49, July.
    9. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(6), pages 701-743, December.
    10. Gael Martin, 2001. "Bayesian Analysis Of A Fractional Cointegration Model," Econometric Reviews, Taylor & Francis Journals, vol. 20(2), pages 217-234.
    11. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    12. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    13. D. S. Poskitt & C. L. Skeels, 2004. "Approximating the Distribution of the Instrumental Variables Estimator when the Concentration Parameter is Small," Monash Econometrics and Business Statistics Working Papers 19/04, Monash University, Department of Econometrics and Business Statistics.
    14. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    15. Poskitt, D.S. & Skeels, C.L., 2007. "Approximating the distribution of the two-stage least squares estimator when the concentration parameter is small," Journal of Econometrics, Elsevier, vol. 139(1), pages 217-236, July.
    16. Gael M. Martin, 2000. "US deficit sustainability: a new approach based on multiple endogenous breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 83-105.
    17. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    18. Bauwens, L. & Dijk, H. K., 1989. "Bayesian Limited Information Analysis Revisited," Econometric Institute Archives 272386, Erasmus University Rotterdam.
    19. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    20. Phillips, Peter C.B., 2006. "A Remark On Bimodality And Weak Instrumentation In Structural Equation Estimation," Econometric Theory, Cambridge University Press, vol. 22(5), pages 947-960, October.

    More about this item

    Keywords

    Cauchy tails; exact finite sample distributions; Jeffreys prior; just identification; limited information; posterior density; simultaneous equations model;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.