IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022i1p37-60.html
   My bibliography  Save this article

Pre‐apprenticeship training for young people: Estimating the marginal and average treatment effects

Author

Listed:
  • Richard Dorsett
  • Lucy Stokes

Abstract

This paper evaluates traineeships, a voluntary programme of work placement and preparation that aims to help young unemployed people in England compete for jobs and apprenticeships. Applying the method of local instrumental variables to administrative data, we estimate the marginal treatment effects on apprenticeship take‐up and employment. The heterogeneous impacts are then aggregated to form an estimate of the average impact of treatment for all participants. The results suggest that, among younger trainees, participation increases the probability of becoming an apprentice and that this holds across the distribution of unobserved heterogeneity. For older trainees, we find no significant effect on the probability of becoming an apprenticeship on average but some evidence of a negative effect among those more resistant to participating. We find no effects on employment for either age group.

Suggested Citation

  • Richard Dorsett & Lucy Stokes, 2022. "Pre‐apprenticeship training for young people: Estimating the marginal and average treatment effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 37-60, January.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:1:p:37-60
    DOI: 10.1111/rssa.12697
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12697
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bruno Crépon & Esther Duflo & Marc Gurgand & Roland Rathelot & Philippe Zamora, 2013. "Do Labor Market Policies have Displacement Effects? Evidence from a Clustered Randomized Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(2), pages 531-580.
    2. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    3. repec:hal:pseose:halshs-00840901 is not listed on IDEAS
    4. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 136(2), pages 341-396, February.
    5. Christian N. Brinch & Magne Mogstad & Matthew Wiswall, 2017. "Beyond LATE with a Discrete Instrument," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 985-1039.
    6. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    7. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," Working Papers 696, Princeton University, Department of Economics, Industrial Relations Section..
    8. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    9. Richard Blundell & Monica Costa Dias & Costas Meghir & John Van Reenen, 2004. "Evaluating the Employment Impact of a Mandatory Job Search Program," Journal of the European Economic Association, MIT Press, vol. 2(4), pages 569-606, June.
    10. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    11. Scott Brave & Thomas Walstrum, 2014. "Estimating marginal treatment effects using parametric and semiparametric methods," Stata Journal, StataCorp LP, vol. 14(1), pages 191-217, March.
    12. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," Working Papers 696, Princeton University, Department of Economics, Industrial Relations Section..
    13. repec:adr:anecst:y:2008:i:91-92:p:12 is not listed on IDEAS
    14. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    15. Aakvik, Arild & Heckman, James J. & Vytlacil, Edward J., 2005. "Estimating treatment effects for discrete outcomes when responses to treatment vary: an application to Norwegian vocational rehabilitation programs," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 15-51.
    16. Robert Moffitt, 2008. "Estimating Marginal Treatment Effects in Heterogeneous Populations," Annals of Economics and Statistics, GENES, issue 91-92, pages 239-261.
    17. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    18. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerten, Elisa & Beckmann, Michael & Kräkel, Matthias, 2022. "Information and Communication Technology, Hierarchy, and Job Design," IZA Discussion Papers 15491, Institute of Labor Economics (IZA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    2. Heckman, James J. & Lochner, Lance J. & Todd, Petra E., 2006. "Earnings Functions, Rates of Return and Treatment Effects: The Mincer Equation and Beyond," Handbook of the Economics of Education, in: Erik Hanushek & F. Welch (ed.), Handbook of the Economics of Education, edition 1, volume 1, chapter 7, pages 307-458, Elsevier.
    3. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    4. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    5. Thomas Cornelissen & Christian Dustmann & Anna Raute & Uta Schönberg, 2018. "Who Benefits from Universal Child Care? Estimating Marginal Returns to Early Child Care Attendance," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2356-2409.
    6. Akabayashi, Hideo & Ruberg, Tim & Shikishima, Chizuru & Yamashita, Jun, 2023. "Education-oriented and care-oriented preschools: Implications on child development," Labour Economics, Elsevier, vol. 84(C).
    7. Rob J. M. Alessie & Viola Angelini & Jochen O. Mierau & Laura Viluma, 2020. "Moral hazard and selection for voluntary deductibles," Health Economics, John Wiley & Sons, Ltd., vol. 29(10), pages 1251-1269, October.
    8. Laura Schmitz, 2022. "Heterogeneous Effects of After-School Care on Child Development," Discussion Papers of DIW Berlin 2006, DIW Berlin, German Institute for Economic Research.
    9. Péron, M.; & Dormont, B.;, 2018. "Heterogeneous moral hazard in Supplementary Health Insurance," Health, Econometrics and Data Group (HEDG) Working Papers 18/27, HEDG, c/o Department of Economics, University of York.
    10. Loreto Reyes & Jorge Rodríguez & Sergio S. Urzúa, 2013. "Heterogeneous Economic Returns to Postsecondary Degrees: Evidence from Chile," NBER Working Papers 18817, National Bureau of Economic Research, Inc.
    11. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    12. Elisa Gerten & Michael Beckmann & Elisa Gerten & Matthias Kräkel, 2022. "Information and Communication Technology, Hierarchy, and Job Design," ECONtribute Discussion Papers Series 189, University of Bonn and University of Cologne, Germany.
    13. Tafti, Elena Ashtari, 2023. "Technology, Skills, and Performance: The Case of Robots in Surgery," CINCH Working Paper Series (since 2020) 78746, Duisburg-Essen University Library, DuEPublico.
    14. Matthias Westphal & Daniel A Kamhöfer & Hendrik Schmitz, 2022. "Marginal College Wage Premiums Under Selection Into Employment," The Economic Journal, Royal Economic Society, vol. 132(646), pages 2231-2272.
    15. Tymon S{l}oczy'nski, 2018. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," Papers 1810.01576, arXiv.org, revised May 2020.
    16. Mario Fiorini & Katrien Stevens, 2021. "Scrutinizing the Monotonicity Assumption in IV and fuzzy RD designs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1475-1526, December.
    17. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    18. Olasehinde, Toba Stephen & Jin, Ye & Qiao, Fangbin & Mao, Shiping, 2023. "Marginal returns on Chinese agricultural technology transfer in Nigeria: Who benefits more?," China Economic Review, Elsevier, vol. 78(C).
    19. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    20. Domenico Depalo, 2020. "Explaining the causal effect of adherence to medication on cholesterol through the marginal patient," Health Economics, John Wiley & Sons, Ltd., vol. 29(S1), pages 110-126, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:1:p:37-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.