IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/125584.html
   My bibliography  Save this paper

Autonomous algorithmic collusion: Economic research and policy implications

Author

Listed:
  • Assad, Stephanie
  • Calvano, Emilio
  • Calzolari, Giacomo
  • Clark, Robert
  • Ershov, Daniel
  • Johnson, Justin
  • Pastorello, Sergio
  • Rhodes, Andrew
  • XU, Lei
  • Wildenbeest, Matthijs
  • Denicolò, Vincenzo

Abstract

Markets are being populated with new generations of pricing algorithms, powered with Artificial Intelligence, that have the ability to autonomously learn to operate. This ability can be both a source of efficiency and cause of concern for the risk that algorithms autonomously and tacitly learn to collude. In this paper we explore recent developments in the economic literature and discuss implications for policy.

Suggested Citation

  • Assad, Stephanie & Calvano, Emilio & Calzolari, Giacomo & Clark, Robert & Ershov, Daniel & Johnson, Justin & Pastorello, Sergio & Rhodes, Andrew & XU, Lei & Wildenbeest, Matthijs & Denicolò, Vincenzo, 2021. "Autonomous algorithmic collusion: Economic research and policy implications," TSE Working Papers 21-1210, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:125584
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2021/wp_tse_1210.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert Clark & Jean-François Houde, 2014. "The Effect of Explicit Communication on pricing: Evidence from the Collapse of a Gasoline Cartel," Journal of Industrial Economics, Wiley Blackwell, vol. 62(2), pages 191-228, June.
    2. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    3. Stephanie Assad & Robert Clark & Daniel Ershov & Lei Xu, 2020. "Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market," CESifo Working Paper Series 8521, CESifo.
    4. David P. Byrne & Nicolas de Roos, 2019. "Learning to Coordinate: A Study in Retail Gasoline," American Economic Review, American Economic Association, vol. 109(2), pages 591-619, February.
    5. Robert Clark & Jean-Fran?ois Houde, 2013. "Collusion with Asymmetric Retailers: Evidence from a Gasoline Price-Fixing Case," American Economic Journal: Microeconomics, American Economic Association, vol. 5(3), pages 97-123, August.
    6. Jeanine Miklós-Thal & Catherine Tucker, 2019. "Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers?," Management Science, INFORMS, vol. 65(4), pages 1552-1561, April.
    7. Catherine Tucker, 2008. "Identifying Formal and Informal Influence in Technology Adoption with Network Externalities," Management Science, INFORMS, vol. 54(12), pages 2024-2038, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin, Simon & Rasch, Alexander, 2024. "Demand forecasting, signal precision, and collusion with hidden actions," International Journal of Industrial Organization, Elsevier, vol. 92(C).
    2. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    3. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    4. Rhodes, Andrew, 2023. "A Survey on Drip Pricing and Other False Advertising," TSE Working Papers 23-1434, Toulouse School of Economics (TSE).
    5. Aleksandar B. Todorov, 2022. "Algorithmic pricing and concerted behaviour – competitive challenges?," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 90-107.
    6. Werner, Tobias, 2023. "Algorithmic and Human Collusion," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277573, Verein für Socialpolitik / German Economic Association.
    7. Patrice Bougette & Oliver Budzinski & Frédéric Marty, 2024. "Ex-ante versus Ex-post in Competition Law Enforcement: Blurred Boundaries and Economic Rationale," Working Papers halshs-04604840, HAL.
    8. Frédéric Marty & Thierry Warin, 2024. "Deciphering Algorithmic Collusion: Insights from Bandit Algorithms and Implications for Antitrust Enforcement," Post-Print halshs-04745409, HAL.
    9. Frédéric Marty & Thierry Warin, 2023. "Deciphering Algorithmic Collusion: Insights from Bandit Algorithms and Implications for Antitrust Enforcement," CIRANO Working Papers 2023s-26, CIRANO.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Wieting & Geza Sapi, 2021. "Algorithms in the Marketplace: An Empirical Analysis of Automated Pricing in E-Commerce," Working Papers 21-06, NET Institute.
    2. Stephanie Assad & Robert Clark & Daniel Ershov & Lei Xu, 2020. "Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market," CESifo Working Paper Series 8521, CESifo.
    3. Timo Klein, 2021. "Autonomous algorithmic collusion: Q‐learning under sequential pricing," RAND Journal of Economics, RAND Corporation, vol. 52(3), pages 538-558, September.
    4. Martin, Simon & Schmal, W. Benedikt, 2021. "Collusive compensation schemes aided by algorithms," DICE Discussion Papers 375, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    5. Fourberg, Niklas & Marques-Magalhaes, Katrin & Wiewiorra, Lukas, 2022. "They are among us: Pricing behavior of algorithms in the field," WIK Working Papers 6, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, Bad Honnef.
    6. Normann, Hans-Theo & Sternberg, Martin, 2023. "Human-algorithm interaction: Algorithmic pricing in hybrid laboratory markets," European Economic Review, Elsevier, vol. 152(C).
    7. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    8. Fourberg, Niklas & Marques Magalhaes, Katrin & Wiewiorra, Lukas, 2023. "They Are Among Us: Pricing Behavior of Algorithms in the Field," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277958, International Telecommunications Society (ITS).
    9. Jorge Lemus & Fernando Luco, 2021. "Price Leadership and Uncertainty About Future Costs," Journal of Industrial Economics, Wiley Blackwell, vol. 69(2), pages 305-337, June.
    10. Werner, Tobias, 2023. "Algorithmic and Human Collusion," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277573, Verein für Socialpolitik / German Economic Association.
    11. Clark, Robert & Coviello, Decio & de Leverano, Adriano, 2020. "Complementary bidding and the collusive arrangement: Evidence from an antitrust investigation," ZEW Discussion Papers 20-052, ZEW - Leibniz Centre for European Economic Research.
    12. Robert Clark & Ignatius Horstmann & Jean-François Houde, 2021. "Hub and Spoke Cartels: Theory and Evidence from the Grocery Industry," NBER Working Papers 29253, National Bureau of Economic Research, Inc.
    13. Werner, Tobias, 2021. "Algorithmic and human collusion," DICE Discussion Papers 372, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    14. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    15. Martin, Simon & Rasch, Alexander, 2024. "Demand forecasting, signal precision, and collusion with hidden actions," International Journal of Industrial Organization, Elsevier, vol. 92(C).
    16. Porter, Robert H., 2020. "Mergers and coordinated effects," International Journal of Industrial Organization, Elsevier, vol. 73(C).
    17. Normann, Hans-Theo & Sternberg, Martin, 2022. "Human-algorithm interaction: Algorithmic pricing in hybrid laboratory markets," DICE Discussion Papers 392, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    18. González, Xulia & Moral, María J., 2019. "Effects of antitrust prosecution on retail fuel prices," International Journal of Industrial Organization, Elsevier, vol. 67(C).
    19. Suguru Otani, 2024. "Industry Dynamics with Cartels: The Case of the Container Shipping Industry," Discussion Paper Series DP2024-28, Research Institute for Economics & Business Administration, Kobe University.
    20. Bantle, Melissa, 2024. "Screen for collusive behavior: A machine learning approach," Hohenheim Discussion Papers in Business, Economics and Social Sciences 01-2024, University of Hohenheim, Faculty of Business, Economics and Social Sciences.

    More about this item

    Keywords

    Algorithmic Pricing; Antitrust; Competition Policy; Artificial Intelligence; Collusion; Platforms.;
    All these keywords.

    JEL classification:

    • D42 - Microeconomics - - Market Structure, Pricing, and Design - - - Monopoly
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • L42 - Industrial Organization - - Antitrust Issues and Policies - - - Vertical Restraints; Resale Price Maintenance; Quantity Discounts

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:125584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.