IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v30y2021i8p1818-1832.html
   My bibliography  Save this article

Using causal forests to assess heterogeneity in cost‐effectiveness analysis

Author

Listed:
  • Carl Bonander
  • Mikael Svensson

Abstract

We develop a method for data‐driven estimation and analysis of heterogeneity in cost‐effectiveness analyses (CEA) with experimental or observational individual‐level data. Our implementation uses causal forests and cross‐fitted augmented inverse probability weighted learning to estimate heterogeneity in incremental outcomes, costs and net monetary benefits, as well as other parameters relevant to CEA. We also show how the results can be visualized in relevant ways for the analysis of heterogeneity in CEA, such as using individual‐level cost effectiveness planes. Using a simulated dataset and an R package implementing our methods, we show how the approach can be used to estimate the average cost‐effectiveness in the entire sample or in subpopulations, explore and analyze the heterogeneity in incremental outcomes, costs and net monetary benefits (and their determinants), and learn policy rules from the data.

Suggested Citation

  • Carl Bonander & Mikael Svensson, 2021. "Using causal forests to assess heterogeneity in cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 30(8), pages 1818-1832, August.
  • Handle: RePEc:wly:hlthec:v:30:y:2021:i:8:p:1818-1832
    DOI: 10.1002/hec.4263
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.4263
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hec.4263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    3. Savin, N.E., 1984. "Multiple hypothesis testing," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 14, pages 827-879, Elsevier.
    4. Basu, Anirban, 2011. "Economics of individualization in comparative effectiveness research and a basis for a patient-centered health care," Journal of Health Economics, Elsevier, vol. 30(3), pages 549-559, May.
    5. Anirban Basu, 2014. "ESTIMATING PERSON‐CENTERED TREATMENT (PeT) EFFECTS USING INSTRUMENTAL VARIABLES: AN APPLICATION TO EVALUATING PROSTATE CANCER TREATMENTS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 671-691, June.
    6. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
    7. Douglas Coyle & Martin J. Buxton & Bernie J. O'Brien, 2003. "Stratified cost‐effectiveness analysis: a framework for establishing efficient limited use criteria," Health Economics, John Wiley & Sons, Ltd., vol. 12(5), pages 421-427, May.
    8. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    9. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    10. Anirban Basu & David Meltzer, 2007. "Value of Information on Preference Heterogeneity and Individualized Care," Medical Decision Making, , vol. 27(2), pages 112-127, March.
    11. Jeffrey S. Hoch & Andrew H. Briggs & Andrew R. Willan, 2002. "Something old, something new, something borrowed, something blue: a framework for the marriage of health econometrics and cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 11(5), pages 415-430, July.
    12. Baker, Rachel & Chilton, Sue & Donaldson, Cam & Jones-Lee, Michael & Lancsar, Emily & Mason, Helen & Metcalf, Hugh & Pennington, Mark & Wildman, John, 2011. "Searchers vs surveyors in estimating the monetary value of a QALY: resolving a nasty dilemma for NICE," Health Economics, Policy and Law, Cambridge University Press, vol. 6(4), pages 435-447, October.
    13. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelvin Mulungu & Zewdu Ayalew Abro & Wambui Beatrice Muriithi & Menale Kassie & Miachael Kidoido & Subramanian Sevgan & Samira Mohamed & Chrysantus Tanga & Fathiya Khamis, 2024. "One size does not fit all: Heterogeneous economic impact of integrated pest management practices for mango fruit flies in Kenya—a machine learning approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(1), pages 261-279, February.
    2. David Glynn & John Giardina & Julia Hatamyar & Ankur Pandya & Marta Soares & Noemi Kreif, 2024. "Integrating decision modeling and machine learning to inform treatment stratification," Health Economics, John Wiley & Sons, Ltd., vol. 33(8), pages 1772-1792, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    2. Falco J. Bargagli Stoffi & Kenneth De Beckker & Joana E. Maldonado & Kristof De Witte, 2021. "Assessing Sensitivity of Machine Learning Predictions.A Novel Toolbox with an Application to Financial Literacy," Papers 2102.04382, arXiv.org.
    3. Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Papers 2101.00878, arXiv.org.
    4. Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Tinbergen Institute Discussion Papers 21-001/V, Tinbergen Institute.
    5. Maximilian Maurice Gail & Phil-Adrian Klotz, 2021. "The Impact of the Agency Model on E-book Prices: Evidence from the UK," MAGKS Papers on Economics 202111, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    6. Delprato, Marcos & Frola, Alessia & Antequera, Germán, 2022. "Indigenous and non-Indigenous proficiency gaps for out-of-school and in-school populations: A machine learning approach," International Journal of Educational Development, Elsevier, vol. 93(C).
    7. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    8. David Glynn & John Giardina & Julia Hatamyar & Ankur Pandya & Marta Soares & Noemi Kreif, 2024. "Integrating decision modeling and machine learning to inform treatment stratification," Health Economics, John Wiley & Sons, Ltd., vol. 33(8), pages 1772-1792, August.
    9. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    11. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    12. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    13. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    14. Jushan Bai & Sung Hoon Choi & Yuan Liao, 2021. "Feasible generalized least squares for panel data with cross-sectional and serial correlations," Empirical Economics, Springer, vol. 60(1), pages 309-326, January.
    15. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    16. Aysegül Kayaoglu & Ghassan Baliki & Tilman Brück & Melodie Al Daccache & Dorothee Weiffen, 2023. "How to conduct impact evaluations in humanitarian and conflict settings," HiCN Working Papers 387, Households in Conflict Network.
    17. Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
    18. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    19. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    20. Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020. "Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed," Labour Economics, Elsevier, vol. 65(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:30:y:2021:i:8:p:1818-1832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.