IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.05985.html
   My bibliography  Save this paper

Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions

Author

Listed:
  • Gregory Faletto

Abstract

To address the bias of the canonical two-way fixed effects estimator for difference-in-differences under staggered adoptions, Wooldridge (2021) proposed the extended two-way fixed effects estimator, which adds many parameters. However, this reduces efficiency. Restricting some of these parameters to be equal (for example, subsequent treatment effects within a cohort) helps, but ad hoc restrictions may reintroduce bias. We propose a machine learning estimator with a single tuning parameter, fused extended two-way fixed effects (FETWFE), that enables automatic data-driven selection of these restrictions. We prove that under an appropriate sparsity assumption FETWFE identifies the correct restrictions with probability tending to one, which improves efficiency. We also prove the consistency, oracle property, and asymptotic normality of FETWFE for several classes of heterogeneous marginal treatment effect estimators under either conditional or marginal parallel trends, and we prove the same results for conditional average treatment effects under conditional parallel trends. We demonstrate FETWFE in simulation studies and an empirical application.

Suggested Citation

  • Gregory Faletto, 2023. "Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions," Papers 2312.05985, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2312.05985
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.05985
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azeem M. Shaikh & Panos Toulis, 2021. "Randomization Tests in Observational Studies With Staggered Adoption of Treatment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1835-1848, October.
    2. Clément de Chaisemartin & Xavier D'Haultfœuille, 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects," American Economic Review, American Economic Association, vol. 110(9), pages 2964-2996, September.
    3. Grimmer, Justin & Messing, Solomon & Westwood, Sean J., 2017. "Estimating Heterogeneous Treatment Effects and the Effects of Heterogeneous Treatments with Ensemble Methods," Political Analysis, Cambridge University Press, vol. 25(4), pages 413-434, October.
    4. de Chaisemartin, Clément & D’Haultfœuille, Xavier, 2023. "Two-way fixed effects and differences-in-differences estimators with several treatments," Journal of Econometrics, Elsevier, vol. 236(2).
    5. Liyang Sun & Jesse M. Shapiro, 2022. "A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure," Journal of Economic Perspectives, American Economic Association, vol. 36(4), pages 193-204, Fall.
    6. Evelina Gavrilova & Audun Langørgen & Floris T. Zoutman & Floris Zoutman, 2023. "Dynamic Causal Forests, with an Application to Payroll Tax Incidence in Norway," CESifo Working Paper Series 10532, CESifo.
    7. Julia Hatamyar & Noemi Kreif & Rudi Rocha & Martin Huber, 2023. "Machine Learning for Staggered Difference-in-Differences and Dynamic Treatment Effect Heterogeneity," Papers 2310.11962, arXiv.org.
    8. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    9. Dalia Ghanem & Pedro H. C. Sant'Anna & Kaspar Wüthrich, 2022. "Selection and Parallel Trends," CESifo Working Paper Series 9910, CESifo.
    10. X Nie & S Wager, 2021. "Quasi-oracle estimation of heterogeneous treatment effects [TensorFlow: A system for large-scale machine learning]," Biometrika, Biometrika Trust, vol. 108(2), pages 299-319.
    11. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," NBER Working Papers 31942, National Bureau of Economic Research, Inc.
    12. Ding, Peng & Li, Fan, 2019. "A Bracketing Relationship between Difference-in-Differences and Lagged-Dependent-Variable Adjustment," Political Analysis, Cambridge University Press, vol. 27(4), pages 605-615, October.
    13. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    14. Clément de Chaisemartin & Xavier D’Haultfœuille, 2023. "Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: a survey," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 1-30.
    15. Lechner, Michael, 2011. "The Estimation of Causal Effects by Difference-in-Difference Methods," Foundations and Trends(R) in Econometrics, now publishers, vol. 4(3), pages 165-224, November.
    16. Kirill Borusyak & Xavier Jaravel & Jann Spiess, 2021. "Revisiting Event Study Designs: Robust and Efficient Estimation," Papers 2108.12419, arXiv.org, revised Jan 2024.
    17. Neng-Chieh Chang, 2020. "Double/debiased machine learning for difference-in-differences models," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 177-191.
    18. Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015. "Estimating Conditional Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
    19. Michael Zimmert, 2018. "Efficient Difference-in-Differences Estimation with High-Dimensional Common Trend Confounding," Papers 1809.01643, arXiv.org, revised Aug 2020.
    20. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    21. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    22. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    23. Meyer, Bruce D, 1995. "Natural and Quasi-experiments in Economics," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 151-161, April.
    24. Charles F. Manski & John V. Pepper, 2018. "How Do Right-to-Carry Laws Affect Crime Rates? Coping with Ambiguity Using Bounded-Variation Assumptions," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 232-244, May.
    25. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    26. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    27. Imai, Kosuke & Strauss, Aaron, 2011. "Estimation of Heterogeneous Treatment Effects from Randomized Experiments, with Application to the Optimal Planning of the Get-Out-the-Vote Campaign," Political Analysis, Cambridge University Press, vol. 19(1), pages 1-19, January.
    28. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    29. Qingliang Fan & Yu-Chin Hsu & Robert P. Lieli & Yichong Zhang, 2022. "Estimation of Conditional Average Treatment Effects With High-Dimensional Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 313-327, January.
    30. Djebbari, Habiba & Smith, Jeffrey, 2008. "Heterogeneous impacts in PROGRESA," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 64-80, July.
    31. Ariella Kahn-Lang & Kevin Lang, 2020. "The Promise and Pitfalls of Differences-in-Differences: Reflections on 16 and Pregnant and Other Applications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 613-620, July.
    32. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    33. Callaway, Brantly & Li, Tong, 2023. "Policy evaluation during a pandemic," Journal of Econometrics, Elsevier, vol. 236(1).
    34. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    35. Susan Athey & David Blei & Robert Donnelly & Francisco Ruiz & Tobias Schmidt, 2018. "Estimating Heterogeneous Consumer Preferences for Restaurants and Travel Time Using Mobile Location Data," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 64-67, May.
    36. Jonathan Roth & Pedro H. C. Sant'Anna, 2023. "When Is Parallel Trends Sensitive to Functional Form?," Econometrica, Econometric Society, vol. 91(2), pages 737-747, March.
    37. Heiler, Phillip & Mareckova, Jana, 2021. "Shrinkage for categorical regressors," Journal of Econometrics, Elsevier, vol. 223(1), pages 161-189.
    38. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    39. Nicholas Brown & Kyle Butts, 2022. "A Unified Framework for Dynamic Treatment Effect Estimation in Interactive Fixed Effect Models," Working Paper 1495, Economics Department, Queen's University.
    40. Jonathan Roth, 2022. "Pretest with Caution: Event-Study Estimates after Testing for Parallel Trends," American Economic Review: Insights, American Economic Association, vol. 4(3), pages 305-322, September.
    41. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    42. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    43. Kosuke Imai & In Song Kim, 2019. "When Should We Use Unit Fixed Effects Regression Models for Causal Inference with Longitudinal Data?," American Journal of Political Science, John Wiley & Sons, vol. 63(2), pages 467-490, April.
    44. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    45. Vira Semenova & Victor Chernozhukov, 2021. "Debiased machine learning of conditional average treatment effects and other causal functions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 264-289.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    2. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    3. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    4. Ulbing, Philipp, 2024. "The Zero Lower Bound on Household Deposit Rates: Not As Binding As We Thought," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302353, Verein für Socialpolitik / German Economic Association.
    5. Jeffrey M Wooldridge, 2023. "Simple approaches to nonlinear difference-in-differences with panel data," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 31-66.
    6. Kotyrlo, Elena, 2024. "Simple and complex difference-in-differences approach," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 73, pages 119-142.
    7. Callaway, Brantly & Li, Tong, 2023. "Policy evaluation during a pandemic," Journal of Econometrics, Elsevier, vol. 236(1).
    8. Cl'ement de Chaisemartin & Xavier D'Haultf{oe}uille, 2021. "Two-Way Fixed Effects and Differences-in-Differences with Heterogeneous Treatment Effects: A Survey," Papers 2112.04565, arXiv.org, revised Jun 2022.
    9. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    10. Kyunghoon Ban & D'esir'e K'edagni, 2022. "Robust Difference-in-differences Models," Papers 2211.06710, arXiv.org, revised Aug 2023.
    11. Dalia Ghanem & Pedro H. C. Sant'Anna & Kaspar Wüthrich, 2022. "Selection and Parallel Trends," CESifo Working Paper Series 9910, CESifo.
    12. Clément de Chaisemartin & Xavier D’Haultfœuille, 2023. "Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: a survey," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 1-30.
    13. Ridwan Ah Sheikh & Sunil Kanwar, 2024. "Revisiting the Impact of TRIPS on IPR-intensive Export Flows: Evidence from Staggered Difference-in-Differences," Working papers 351, Centre for Development Economics, Delhi School of Economics.
    14. Isabelle Chort & Berk Öktem, 2024. "Agricultural shocks, coping policies and deforestation: Evidence from the coffee leaf rust epidemic in Mexico," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(3), pages 1020-1057, May.
    15. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    16. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    17. Timo Schenk, 2023. "Time-Weighted Difference-in-Differences: Accounting for Common Factors in Short T Panels," Tinbergen Institute Discussion Papers 23-004/III, Tinbergen Institute.
    18. Giulia Bettin & Isabella Giorgetti & Stefano Staffolani, 2024. "The impact of Covid-19 lockdown on the gender gap in the Italian labour market," Review of Economics of the Household, Springer, vol. 22(1), pages 1-33, March.
    19. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    20. Brantly Callaway, 2022. "Difference-in-Differences for Policy Evaluation," Papers 2203.15646, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.05985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.