IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v92y2024i2p194-245.html
   My bibliography  Save this article

Estimation of Graphical Models: An Overview of Selected Topics

Author

Listed:
  • Li‐Pang Chen

Abstract

Graphical modelling is an important branch of statistics that has been successfully applied in biology, social science, causal inference and so on. Graphical models illuminate connections between many variables and can even describe complex data structures or noisy data. Graphical models have been combined with supervised learning techniques such as regression modelling and classification analysis with multi‐class responses. This paper first reviews some fundamental graphical modelling concepts, focusing on estimation methods and computational algorithms. Several advanced topics are then considered, delving into complex graphical structures and noisy data. Applications in regression and classification are considered throughout.

Suggested Citation

  • Li‐Pang Chen, 2024. "Estimation of Graphical Models: An Overview of Selected Topics," International Statistical Review, International Statistical Institute, vol. 92(2), pages 194-245, August.
  • Handle: RePEc:bla:istatr:v:92:y:2024:i:2:p:194-245
    DOI: 10.1111/insr.12552
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12552
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li-Pang Chen, 2022. "Network-Based Discriminant Analysis for Multiclassification," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 410-431, November.
    2. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    3. Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk," Papers 1607.00286, arXiv.org, revised Oct 2019.
    4. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    5. Yuying Xie & Yufeng Liu & William Valdar, 2016. "Joint estimation of multiple dependent Gaussian graphical models with applications to mouse genomics," Biometrika, Biometrika Trust, vol. 103(3), pages 493-511.
    6. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2011. "Joint estimation of multiple graphical models," Biometrika, Biometrika Trust, vol. 98(1), pages 1-15.
    7. Li-Pang Chen & Grace Y. Yi & Qihuang Zhang & Wenqing He, 2019. "Multiclass analysis and prediction with network structured covariates," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-25, December.
    8. Shizhe Chen & Daniela M. Witten & Ali Shojaie, 2015. "Selection and estimation for mixed graphical models," Biometrika, Biometrika Trust, vol. 102(1), pages 47-64.
    9. Joong-Ho Won & Johan Lim & Seung-Jean Kim & Bala Rajaratnam, 2013. "Condition-number-regularized covariance estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 427-450, June.
    10. Skripnikov, A. & Michailidis, G., 2019. "Regularized joint estimation of related vector autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 164-177.
    11. Peng, Jie & Wang, Pei & Zhou, Nengfeng & Zhu, Ji, 2009. "Partial Correlation Estimation by Joint Sparse Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 735-746.
    12. Kshitij Khare & Sang-Yun Oh & Bala Rajaratnam, 2015. "A convex pseudolikelihood framework for high dimensional partial correlation estimation with convergence guarantees," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 803-825, September.
    13. T. Tony Cai & Hongzhe Li & Weidong Liu & Jichun Xie, 2013. "Covariate-adjusted precision matrix estimation with an application in genetical genomics," Biometrika, Biometrika Trust, vol. 100(1), pages 139-156.
    14. Jianqing Fan & Han Liu & Yang Ning & Hui Zou, 2017. "High dimensional semiparametric latent graphical model for mixed data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 405-421, March.
    15. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    16. Onkar Dalal & Bala Rajaratnam, 2017. "Sparse Gaussian graphical model estimation via alternating minimization," Biometrika, Biometrika Trust, vol. 104(2), pages 379-395.
    17. Li-Pang Chen & Hyungjun Cho, 2022. "NetDA: An R Package for Network-Based Discriminant Analysis Subject to Multilabel Classes," Journal of Probability and Statistics, Hindawi, vol. 2022, pages 1-14, September.
    18. Bing Li & Hyonho Chun & Hongyu Zhao, 2012. "Sparse Estimation of Conditional Graphical Models With Application to Gene Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 152-167, March.
    19. Marco Avella-Medina & Heather S Battey & Jianqing Fan & Quefeng Li, 2018. "Robust estimation of high-dimensional covariance and precision matrices," Biometrika, Biometrika Trust, vol. 105(2), pages 271-284.
    20. Patrick Danaher & Pei Wang & Daniela M. Witten, 2014. "The joint graphical lasso for inverse covariance estimation across multiple classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 373-397, March.
    21. Chenlei Leng & Cheng Yong Tang, 2012. "Sparse Matrix Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1187-1200, September.
    22. Li‐Pang Chen & Grace Y. Yi, 2021. "Analysis of noisy survival data with graphical proportional hazards measurement error models," Biometrics, The International Biometric Society, vol. 77(3), pages 956-969, September.
    23. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
    24. Li-Pang Chen, 2018. "Multiclassification to Gene Expression Data with Some Complex Features," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(1), pages 1-2, December.
    25. Cai, Wei & Guan, Guoyu & Pan, Rui & Zhu, Xuening & Wang, Hansheng, 2018. "Network linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 32-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Xinyan & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2021. "Conditional score matching for high-dimensional partial graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    2. Li-Pang Chen, 2022. "Network-Based Discriminant Analysis for Multiclassification," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 410-431, November.
    3. Kevin H. Lee & Qian Chen & Wayne S. DeSarbo & Lingzhou Xue, 2022. "Estimating Finite Mixtures of Ordinal Graphical Models," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 83-106, March.
    4. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    5. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    6. Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2021. "Jewel : A Novel Method for Joint Estimation of Gaussian Graphical Models," Mathematics, MDPI, vol. 9(17), pages 1-24, August.
    7. Xiao Guo & Hai Zhang, 2020. "Sparse directed acyclic graphs incorporating the covariates," Statistical Papers, Springer, vol. 61(5), pages 2119-2148, October.
    8. Huihang Liu & Xinyu Zhang, 2023. "Frequentist model averaging for undirected Gaussian graphical models," Biometrics, The International Biometric Society, vol. 79(3), pages 2050-2062, September.
    9. Tan, Kean Ming & Witten, Daniela & Shojaie, Ali, 2015. "The cluster graphical lasso for improved estimation of Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 23-36.
    10. Shan, Liang & Kim, Inyoung, 2018. "Joint estimation of multiple Gaussian graphical models across unbalanced classes," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 89-103.
    11. Young-Geun Choi & Seunghwan Lee & Donghyeon Yu, 2022. "An efficient parallel block coordinate descent algorithm for large-scale precision matrix estimation using graphics processing units," Computational Statistics, Springer, vol. 37(1), pages 419-443, March.
    12. Wang, Ke & Franks, Alexander & Oh, Sang-Yun, 2023. "Learning Gaussian graphical models with latent confounders," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    13. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
    14. Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    15. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    16. Wessel N. van Wieringen & Carel F. W. Peeters & Renee X. de Menezes & Mark A. van de Wiel, 2018. "Testing for pathway (in)activation by using Gaussian graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1419-1436, November.
    17. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    18. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    19. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    20. Bar, Haim & Wells, Martin T., 2023. "On graphical models and convex geometry," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:92:y:2024:i:2:p:194-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.