IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i2p271-284..html
   My bibliography  Save this article

Robust estimation of high-dimensional covariance and precision matrices

Author

Listed:
  • Marco Avella-Medina
  • Heather S Battey
  • Jianqing Fan
  • Quefeng Li

Abstract

SUMMARYHigh-dimensional data are often most plausibly generated from distributions with complex structure and leptokurtosis in some or all components. Covariance and precision matrices provide a useful summary of such structure, yet the performance of popular matrix estimators typically hinges upon a sub-Gaussianity assumption. This paper presents robust matrix estimators whose performance is guaranteed for a much richer class of distributions. The proposed estimators, under a bounded fourth moment assumption, achieve the same minimax convergence rates as do existing methods under a sub-Gaussianity assumption. Consistency of the proposed estimators is also established under the weak assumption of bounded $2+\epsilon$ moments for $\epsilon\in (0,2)$. The associated convergence rates depend on $\epsilon$.

Suggested Citation

  • Marco Avella-Medina & Heather S Battey & Jianqing Fan & Quefeng Li, 2018. "Robust estimation of high-dimensional covariance and precision matrices," Biometrika, Biometrika Trust, vol. 105(2), pages 271-284.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:2:p:271-284.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy011
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xin & Kong, Lingchen & Wang, Liqun, 2024. "Estimation of sparse covariance matrix via non-convex regularization," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    2. Yang, Shuquan & Ling, Nengxiang, 2023. "Robust projected principal component analysis for large-dimensional semiparametric factor modeling," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    3. Kangqiang Li & Han Bao & Lixin Zhang, 2022. "Robust covariance estimation for distributed principal component analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(6), pages 707-732, August.
    4. Xiao, Xuan & Xu, Xingbai & Zhong, Wei, 2023. "Huber estimation for the network autoregressive model," Statistics & Probability Letters, Elsevier, vol. 203(C).
    5. Xin Wang & Lingchen Kong & Liqun Wang & Zhaoqilin Yang, 2023. "High-Dimensional Covariance Estimation via Constrained L q -Type Regularization," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    6. Li, Kangqiang & Tang, Songqiao & Zhang, Lixin, 2022. "Robust parameter estimation of regression models under weakened moment assumptions," Statistics & Probability Letters, Elsevier, vol. 191(C).
    7. Christis Katsouris, 2021. "Optimal Portfolio Choice and Stock Centrality for Tail Risk Events," Papers 2112.12031, arXiv.org.
    8. Alexander Giessing & Jianqing Fan, 2020. "Bootstrapping $\ell_p$-Statistics in High Dimensions," Papers 2006.13099, arXiv.org, revised Aug 2020.
    9. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    10. Li, Huimin & Wang, Jinru, 2024. "Sparse basis covariance matrix estimation for high dimensional compositional data via hard thresholding," Statistics & Probability Letters, Elsevier, vol. 209(C).
    11. Liang, Wanfeng & Wu, Yue & Ma, Xiaoyan, 2022. "Robust sparse precision matrix estimation for high-dimensional compositional data," Statistics & Probability Letters, Elsevier, vol. 184(C).
    12. Zeyu Diao & Lili Yue & Fanrong Zhao & Gaorong Li, 2022. "High-Dimensional Regression Adjustment Estimation for Average Treatment Effect with Highly Correlated Covariates," Mathematics, MDPI, vol. 10(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:2:p:271-284.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.