Robust estimation of high-dimensional covariance and precision matrices
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Xin & Kong, Lingchen & Wang, Liqun, 2024. "Estimation of sparse covariance matrix via non-convex regularization," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Yang, Shuquan & Ling, Nengxiang, 2023. "Robust projected principal component analysis for large-dimensional semiparametric factor modeling," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
- Kangqiang Li & Han Bao & Lixin Zhang, 2022. "Robust covariance estimation for distributed principal component analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(6), pages 707-732, August.
- Xiao, Xuan & Xu, Xingbai & Zhong, Wei, 2023. "Huber estimation for the network autoregressive model," Statistics & Probability Letters, Elsevier, vol. 203(C).
- Xin Wang & Lingchen Kong & Liqun Wang & Zhaoqilin Yang, 2023. "High-Dimensional Covariance Estimation via Constrained L q -Type Regularization," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
- Li, Kangqiang & Tang, Songqiao & Zhang, Lixin, 2022. "Robust parameter estimation of regression models under weakened moment assumptions," Statistics & Probability Letters, Elsevier, vol. 191(C).
- Christis Katsouris, 2021. "Optimal Portfolio Choice and Stock Centrality for Tail Risk Events," Papers 2112.12031, arXiv.org.
- Alexander Giessing & Jianqing Fan, 2020. "Bootstrapping $\ell_p$-Statistics in High Dimensions," Papers 2006.13099, arXiv.org, revised Aug 2020.
- Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
- Li, Huimin & Wang, Jinru, 2024. "Sparse basis covariance matrix estimation for high dimensional compositional data via hard thresholding," Statistics & Probability Letters, Elsevier, vol. 209(C).
- Liang, Wanfeng & Wu, Yue & Ma, Xiaoyan, 2022. "Robust sparse precision matrix estimation for high-dimensional compositional data," Statistics & Probability Letters, Elsevier, vol. 184(C).
- Zeyu Diao & Lili Yue & Fanrong Zhao & Gaorong Li, 2022. "High-Dimensional Regression Adjustment Estimation for Average Treatment Effect with Highly Correlated Covariates," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
More about this item
Keywords
Constrained ℓ1-minimization; Leptokurtosis; Minimax rate; Robustness; Thresholding;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:2:p:271-284.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.