IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v117y2018icp32-44.html
   My bibliography  Save this article

Network linear discriminant analysis

Author

Listed:
  • Cai, Wei
  • Guan, Guoyu
  • Pan, Rui
  • Zhu, Xuening
  • Wang, Hansheng

Abstract

Linear discriminant analysis (LDA) is one of the most popularly used classification methods. With the rapid advance of information technology, network data are becoming increasingly available. A novel method called network linear discriminant analysis (NLDA) is proposed to deal with the classification problem for network data. The NLDA model takes both network information and predictive variables into consideration. Theoretically, the misclassification rate is studied and an upper bound is derived under mild conditions. Furthermore, it is observed that real networks are often sparse in structure. As a result, asymptotic performance of NLDA is also obtained under certain sparsity assumptions. In order to evaluate the finite sample performance of the newly proposed methodology, a number of simulation studies are conducted. Lastly, a real data analysis about Sina Weibo is also presented for illustration purpose.

Suggested Citation

  • Cai, Wei & Guan, Guoyu & Pan, Rui & Zhu, Xuening & Wang, Hansheng, 2018. "Network linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 32-44.
  • Handle: RePEc:eee:csdana:v:117:y:2018:i:c:p:32-44
    DOI: 10.1016/j.csda.2017.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731730155X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rui Pan & Hansheng Wang & Runze Li, 2016. "Ultrahigh-Dimensional Multiclass Linear Discriminant Analysis by Pairwise Sure Independence Screening," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 169-179, March.
    2. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    3. Daniel K. Sewell & Yuguo Chen, 2015. "Latent Space Models for Dynamic Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1646-1657, December.
    4. Gareth M. James & Trevor J. Hastie, 2001. "Functional linear discriminant analysis for irregularly sampled curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 533-550.
    5. Stanley Wasserman & Philippa Pattison, 1996. "Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 401-425, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li-Pang Chen & Grace Y. Yi & Qihuang Zhang & Wenqing He, 2019. "Multiclass analysis and prediction with network structured covariates," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-25, December.
    2. Li-Pang Chen, 2022. "Network-Based Discriminant Analysis for Multiclassification," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 410-431, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Jihui & Li, Gen & Wilson, James D., 2020. "Varying-coefficient models for dynamic networks," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    2. Patacchini, Eleonora & Hsieh, Chih-Sheng & Lin, Xu, 2019. "Social Interaction Methods," CEPR Discussion Papers 14141, C.E.P.R. Discussion Papers.
    3. Joshua Daniel Loyal & Yuguo Chen, 2020. "Statistical Network Analysis: A Review with Applications to the Coronavirus Disease 2019 Pandemic," International Statistical Review, International Statistical Institute, vol. 88(2), pages 419-440, August.
    4. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    5. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    6. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    7. Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.
    8. Wong, Ling Heng & Pattison, Philippa & Robins, Garry, 2006. "A spatial model for social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 99-120.
    9. Sayan Chakraborty & Arnab Bhattacharjee & Taps Maiti, 2021. "Structural Factorization of Latent Adjacency Matrix, with an application to Auto Industry Networks," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 185-206, November.
    10. Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020. "Dynamic interbank network analysis using latent space models," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    11. Tracy M. Sweet, 2019. "Modeling Social Networks as Mediators: A Mixed Membership Stochastic Blockmodel for Mediation," Journal of Educational and Behavioral Statistics, , vol. 44(2), pages 210-240, April.
    12. Jing Wang & Anocha Aribarg & Yves F. Atchadé, 2013. "Modeling Choice Interdependence in a Social Network," Marketing Science, INFORMS, vol. 32(6), pages 977-997, November.
    13. Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
    14. Dzemski, Andreas, 2017. "An empirical model of dyadic link formation in a network with unobserved heterogeneity," Working Papers in Economics 698, University of Gothenburg, Department of Economics, revised Apr 2018.
    15. Teague R. Henry & Kathleen M. Gates & Mitchell J. Prinstein & Douglas Steinley, 2020. "Modeling Heterogeneous Peer Assortment Effects Using Finite Mixture Exponential Random Graph Models," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 8-34, March.
    16. Adrian E. Raftery, 2017. "Comment: Extending the Latent Position Model for Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1531-1534, October.
    17. Sosa, Juan & Betancourt, Brenda, 2022. "A latent space model for multilayer network data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    18. Babkin, Sergii & Stewart, Jonathan R. & Long, Xiaochen & Schweinberger, Michael, 2020. "Large-scale estimation of random graph models with local dependence," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    19. Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
    20. Federica Bianchi & Francesco Bartolucci & Stefano Peluso & Antonietta Mira, 2020. "Longitudinal networks of dyadic relationships using latent trajectories: evidence from the European interbank market," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 711-739, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:117:y:2018:i:c:p:32-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.