IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000558.html
   My bibliography  Save this article

Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model

Author

Listed:
  • Samuel Bandara
  • Johannes P Schlöder
  • Roland Eils
  • Hans Georg Bock
  • Tobias Meyer

Abstract

Differential equation models that describe the dynamic changes of biochemical signaling states are important tools to understand cellular behavior. An essential task in building such representations is to infer the affinities, rate constants, and other parameters of a model from actual measurement data. However, intuitive measurement protocols often fail to generate data that restrict the range of possible parameter values. Here we utilized a numerical method to iteratively design optimal live-cell fluorescence microscopy experiments in order to reveal pharmacological and kinetic parameters of a phosphatidylinositol 3,4,5-trisphosphate (PIP3) second messenger signaling process that is deregulated in many tumors. The experimental approach included the activation of endogenous phosphoinositide 3-kinase (PI3K) by chemically induced recruitment of a regulatory peptide, reversible inhibition of PI3K using a kinase inhibitor, and monitoring of the PI3K-mediated production of PIP3 lipids using the pleckstrin homology (PH) domain of Akt. We found that an intuitively planned and established experimental protocol did not yield data from which relevant parameters could be inferred. Starting from a set of poorly defined model parameters derived from the intuitively planned experiment, we calculated concentration-time profiles for both the inducing and the inhibitory compound that would minimize the predicted uncertainty of parameter estimates. Two cycles of optimization and experimentation were sufficient to narrowly confine the model parameters, with the mean variance of estimates dropping more than sixty-fold. Thus, optimal experimental design proved to be a powerful strategy to minimize the number of experiments needed to infer biological parameters from a cell signaling assay.Author Summary: Differential equation models of signaling processes are useful to gain a molecular and quantitative understanding of cellular information flow. Although these models are typically based on simple kinetic rules, they can often qualitatively describe the behavior of biological systems. However, in the quest to transform biomedical research into an engineering discipline, biologists face the challenge of estimating important parameters of such models from laboratory data. Measurement noise as well as the robust architecture of biological circuits are causes for large uncertainty of parameter estimates. This makes it difficult to plan informative experiments. Here, we used a computational method to predict and minimize the uncertainty of parameter estimates we would obtain from prospective experiments given a cancer-relevant signaling model. This was achieved by optimizing the concentrations and time points for adding drugs in a live-cell microscopy experiment. Our experimental results demonstrated that the advice given by this algorithm resulted in many-fold more informative data than we would obtain by repeating an intuitively planned experiment. Our study shows that significant experimental effort and time can be saved by adopting an optimal experimental design strategy for inferring relevant parameters from biomedical experiments.

Suggested Citation

  • Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
  • Handle: RePEc:plo:pcbi00:1000558
    DOI: 10.1371/journal.pcbi.1000558
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000558
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000558&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Kitano, 2002. "Computational systems biology," Nature, Nature, vol. 420(6912), pages 206-210, November.
    2. Joshua F Apgar & Jared E Toettcher & Drew Endy & Forest M White & Bruce Tidor, 2008. "Stimulus Design for Model Selection and Validation in Cell Signaling," PLOS Computational Biology, Public Library of Science, vol. 4(2), pages 1-10, February.
    3. Ryan N Gutenkunst & Joshua J Waterfall & Fergal P Casey & Kevin S Brown & Christopher R Myers & James P Sethna, 2007. "Universally Sloppy Parameter Sensitivities in Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-8, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro F Villaverde & Antonio Barreiro & Antonis Papachristodoulou, 2016. "Structural Identifiability of Dynamic Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-22, October.
    2. Gabriele Scheler, 2013. "Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-13, February.
    3. Juliane Liepe & Sarah Filippi & Michał Komorowski & Michael P H Stumpf, 2013. "Maximizing the Information Content of Experiments in Systems Biology," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-13, January.
    4. Thembi Mdluli & Gregery T Buzzard & Ann E Rundell, 2015. "Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-23, September.
    5. Afnizanfaizal Abdullah & Safaai Deris & Sohail Anwar & Satya N V Arjunan, 2013. "An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    2. Diego Fernández Slezak & Cecilia Suárez & Guillermo A Cecchi & Guillermo Marshall & Gustavo Stolovitzky, 2010. "When the Optimal Is Not the Best: Parameter Estimation in Complex Biological Models," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    3. Juliane Liepe & Sarah Filippi & Michał Komorowski & Michael P H Stumpf, 2013. "Maximizing the Information Content of Experiments in Systems Biology," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-13, January.
    4. Joshua Russell-Buckland & Christopher P Barnes & Ilias Tachtsidis, 2019. "A Bayesian framework for the analysis of systems biology models of the brain," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-29, April.
    5. Mark K Transtrum & Peng Qiu, 2016. "Bridging Mechanistic and Phenomenological Models of Complex Biological Systems," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-34, May.
    6. Federico Sevlever & Juan Pablo Di Bella & Alejandra C Ventura, 2020. "Discriminating between negative cooperativity and ligand binding to independent sites using pre-equilibrium properties of binding curves," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-21, June.
    7. Adel Dayarian & Madalena Chaves & Eduardo D Sontag & Anirvan M Sengupta, 2009. "Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-12, January.
    8. Mark Read & Paul S. Andrews & Jon Timmis & Vipin Kumar, 2011. "Techniques for grounding agent-based simulations in the real domain: a case study in experimental autoimmune encephalomyelitis," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(1), pages 67-86, May.
    9. Amrita X Sarkar & Eric A Sobie, 2010. "Regression Analysis for Constraining Free Parameters in Electrophysiological Models of Cardiac Cells," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-11, September.
    10. Hongwei Shao & Tao Peng & Zhiwei Ji & Jing Su & Xiaobo Zhou, 2013. "Systematically Studying Kinase Inhibitor Induced Signaling Network Signatures by Integrating Both Therapeutic and Side Effects," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-16, December.
    11. Chandra, Yanto & Wilkinson, Ian F., 2017. "Firm internationalization from a network-centric complex-systems perspective," Journal of World Business, Elsevier, vol. 52(5), pages 691-701.
    12. Jacobo Ayensa-Jiménez & Marina Pérez-Aliacar & Teodora Randelovic & José Antonio Sanz-Herrera & Mohamed H. Doweidar & Manuel Doblaré, 2020. "Analysis of the Parametric Correlation in Mathematical Modeling of In Vitro Glioblastoma Evolution Using Copulas," Mathematics, MDPI, vol. 9(1), pages 1-22, December.
    13. Qing-Ju Jiao & Yan-Kai Zhang & Lu-Ning Li & Hong-Bin Shen, 2011. "BinTree Seeking: A Novel Approach to Mine Both Bi-Sparse and Cohesive Modules in Protein Interaction Networks," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
    14. Tom C Freeman & Leon Goldovsky & Markus Brosch & Stijn van Dongen & Pierre Mazière & Russell J Grocock & Shiri Freilich & Janet Thornton & Anton J Enright, 2007. "Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-11, October.
    15. Yuksel Bayraktar & Esme Isik & Ibrahim Isik & Ayfer Ozyilmaz & Metin Toprak & Fatma Kahraman Guloglu & Serdar Aydin, 2022. "Analyzing of Alzheimer’s Disease Based on Biomedical and Socio-Economic Approach Using Molecular Communication, Artificial Neural Network, and Random Forest Models," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    16. Alireza Yazdani & Lu Lu & Maziar Raissi & George Em Karniadakis, 2020. "Systems biology informed deep learning for inferring parameters and hidden dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-19, November.
    17. Fridtjof Brauns & Leila Iñigo de la Cruz & Werner K.-G. Daalman & Ilse Bruin & Jacob Halatek & Liedewij Laan & Erwin Frey, 2023. "Redundancy and the role of protein copy numbers in the cell polarization machinery of budding yeast," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Eberhard O Voit & Harald A Martens & Stig W Omholt, 2015. "150 Years of the Mass Action Law," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-7, January.
    19. Céline Christiansen-Jucht & Kamil Erguler & Chee Yan Shek & María-Gloria Basáñez & Paul E. Parham, 2015. "Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival," IJERPH, MDPI, vol. 12(6), pages 1-31, May.
    20. Mika Gustafsson & Michael Hörnquist, 2010. "Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-8, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.