IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i2p379-395..html
   My bibliography  Save this article

Sparse Gaussian graphical model estimation via alternating minimization

Author

Listed:
  • Onkar Dalal
  • Bala Rajaratnam

Abstract

SummarySeveral methods have recently been proposed for estimating sparse Gaussian graphical models using $\ell_{1}$-regularization on the inverse covariance or precision matrix. Despite recent advances, contemporary applications require even faster methods to handle ill-conditioned high-dimensional datasets. In this paper, we propose a new method for solving the sparse inverse covariance estimation problem using the alternating minimization algorithm, which effectively works as a proximal gradient algorithm on the dual problem. Our approach has several advantages: it is faster than state-of-the-art algorithms by many orders of magnitude; its global linear convergence has been rigorously demonstrated, underscoring its good theoretical properties; it facilitates additional constraints on pairwise or marginal relationships between feature pairs based on domain-specific knowledge; and it is better at handling extremely ill-conditioned problems. Our algorithm is shown to be more accurate and faster on simulated and real datasets.

Suggested Citation

  • Onkar Dalal & Bala Rajaratnam, 2017. "Sparse Gaussian graphical model estimation via alternating minimization," Biometrika, Biometrika Trust, vol. 104(2), pages 379-395.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:2:p:379-395.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asx003
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaron J Molstad & Adam J Rothman, 2018. "Shrinking characteristics of precision matrix estimators," Biometrika, Biometrika Trust, vol. 105(3), pages 563-574.
    2. Liā€Pang Chen & Grace Y. Yi, 2021. "Analysis of noisy survival data with graphical proportional hazards measurement error models," Biometrics, The International Biometric Society, vol. 77(3), pages 956-969, September.
    3. Pun, Chi Seng & Hadimaja, Matthew Zakharia, 2021. "A self-calibrated direct approach to precision matrix estimation and linear discriminant analysis in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:2:p:379-395.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.