IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v18y2009i2p392-413.html
   My bibliography  Save this article

Semi-parametric second-order reduced-bias high quantile estimation

Author

Listed:
  • Frederico Caeiro
  • M. Gomes

Abstract

No abstract is available for this item.

Suggested Citation

  • Frederico Caeiro & M. Gomes, 2009. "Semi-parametric second-order reduced-bias high quantile estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 392-413, August.
  • Handle: RePEc:spr:testjl:v:18:y:2009:i:2:p:392-413
    DOI: 10.1007/s11749-008-0108-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-008-0108-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-008-0108-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gomes, M. Ivette & Pestana, Dinis, 2007. "A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 280-292, March.
    2. M. Gomes & Fernanda Figueiredo, 2006. "Bias reduction in risk modelling: Semi-parametric quantile estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 375-396, September.
    3. Holger Drees, 1998. "On Smooth Statistical Tail Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 187-210, March.
    4. M. Ivette Gomes & Laurens De Haan & Lígia Henriques Rodrigues, 2008. "Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 31-52, February.
    5. Matthys, Gunther & Delafosse, Emmanuel & Guillou, Armelle & Beirlant, Jan, 2004. "Estimating catastrophic quantile levels for heavy-tailed distributions," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 517-537, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    2. Frederico Caeiro & M. Ivette Gomes & Björn Vandewalle, 2014. "Semi-Parametric Probability-Weighted Moments Estimation Revisited," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    2. Cai, J., 2012. "Estimation concerning risk under extreme value conditions," Other publications TiSEM a92b089f-bc4c-41c2-b297-c, Tilburg University, School of Economics and Management.
    3. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    4. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    5. Dierckx, Goedele & Goegebeur, Yuri & Guillou, Armelle, 2013. "An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 70-86.
    6. Gomes, M. Ivette & Hall, Andreia & Miranda, M. Cristina, 2008. "Subsampling techniques and the Jackknife methodology in the estimation of the extremal index," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2022-2041, January.
    7. Beirlant, Jan & Escobar-Bach, Mikael & Goegebeur, Yuri & Guillou, Armelle, 2016. "Bias-corrected estimation of stable tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 453-466.
    8. Gomes, M. Ivette & Pestana, Dinis & Caeiro, Frederico, 2009. "A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 295-303, February.
    9. Chavez-Demoulin, Valérie & Guillou, Armelle, 2018. "Extreme quantile estimation for β-mixing time series and applications," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 59-74.
    10. Frederico Caeiro & M. Ivette Gomes & Björn Vandewalle, 2014. "Semi-Parametric Probability-Weighted Moments Estimation Revisited," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 1-29, March.
    11. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    12. Tertius de Wet & Yuri Goegebeur & Armelle Guillou, 2012. "Weighted Moment Estimators for the Second Order Scale Parameter," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 753-783, September.
    13. Araújo Santos, Paulo & Fraga Alves, Isabel & Hammoudeh, Shawkat, 2013. "High quantiles estimation with Quasi-PORT and DPOT: An application to value-at-risk for financial variables," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 487-496.
    14. Gomes, M. Ivette & Brilhante, M. Fátima & Caeiro, Frederico & Pestana, Dinis, 2015. "A new partially reduced-bias mean-of-order p class of extreme value index estimators," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 223-237.
    15. Svetlana Litvinova & Mervyn J. Silvapulle, 2020. "Consistency of full-sample bootstrap for estimating high-quantile, tail probability, and tail index," Monash Econometrics and Business Statistics Working Papers 15/20, Monash University, Department of Econometrics and Business Statistics.
    16. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    17. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    18. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    19. Maarten R C van Oordt & Chen Zhou, 2019. "Estimating Systematic Risk under Extremely Adverse Market Conditions," Journal of Financial Econometrics, Oxford University Press, vol. 17(3), pages 432-461.
    20. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:18:y:2009:i:2:p:392-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.