IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v30y2021i1d10.1007_s11749-020-00709-z.html
   My bibliography  Save this article

Tail dependence and smoothness of time series

Author

Listed:
  • Helena Ferreira

    (Universidade da Beira Interior (UBI))

  • Marta Ferreira

    (University of Minho
    University of Lisbon
    University of Lisbon)

Abstract

The risk of catastrophes is related to the possibility of occurring extreme values. Several statistical methodologies have been developed in order to evaluate the propensity of a process for the occurrence of high values and the permanence of these in time. The extremal index $$\theta $$ θ (Leadbetter in Z Wahrscheinlichkeitstheor Verw Geb 65:291–306, 1983) allows to infer the tendency for clustering of high values, but does not allow to evaluate the greater or less amount of oscillations in a cluster. The estimation of $$\theta $$ θ entails the validation of local dependence conditions regulating the distance between high levels oscillations of the process, which is difficult to implement in practice. In this work, we propose a smoothness coefficient to evaluate the degree of smoothness/oscillation in the trajectory of a process, with an intuitive reading and simple estimation. Application in some examples will be provided. We will see that, in a stationary sequence, it coincides with the tail dependence coefficient $$\lambda $$ λ (Sibuya in Ann Inst Stat Math 11:195–210, 1960; Joe in Multivariate models and dependence concepts. Monographs on statistics and applied probability, vol 73. Chapman and Hall, London, 1997), providing a new interpretation of the latter. This relationship will inspire a new estimator for $$\lambda $$ λ , and its performance will be evaluated based on a simulation study. We illustrate with an application to financial series.

Suggested Citation

  • Helena Ferreira & Marta Ferreira, 2021. "Tail dependence and smoothness of time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 198-210, March.
  • Handle: RePEc:spr:testjl:v:30:y:2021:i:1:d:10.1007_s11749-020-00709-z
    DOI: 10.1007/s11749-020-00709-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-020-00709-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-020-00709-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafael Schmidt & Ulrich Stadtmüller, 2006. "Non‐parametric Estimation of Tail Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 307-335, June.
    2. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    3. Ferreira, Helena & Ferreira, Marta, 2018. "Multidimensional extremal dependence coefficients," Statistics & Probability Letters, Elsevier, vol. 133(C), pages 1-8.
    4. Frahm, Gabriel & Junker, Markus & Schmidt, Rafael, 2005. "Estimating the tail-dependence coefficient: Properties and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 80-100, August.
    5. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    6. Ferreira, Helena & Ferreira, Marta, 2014. "Extremal behavior of pMAX processes," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 46-57.
    7. Marta Ferreira & Helena Ferreira, 2012. "On extremal dependence: some contributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 566-583, September.
    8. Li, Haijun, 2009. "Orthant tail dependence of multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 243-256, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carsten Bormann & Melanie Schienle, 2020. "Detecting Structural Differences in Tail Dependence of Financial Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 380-392, April.
    2. Bücher, Axel & Jäschke, Stefan & Wied, Dominik, 2015. "Nonparametric tests for constant tail dependence with an application to energy and finance," Journal of Econometrics, Elsevier, vol. 187(1), pages 154-168.
    3. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    4. César Garcia-Gomez & Ana Pérez & Mercedes Prieto-Alaiz, 2022. "The evolution of poverty in the EU-28: a further look based on multivariate tail dependence," Working Papers 605, ECINEQ, Society for the Study of Economic Inequality.
    5. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 151-162, June.
    6. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    7. Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Other publications TiSEM edc722e6-cc70-4221-87a2-8, Tilburg University, School of Economics and Management.
    8. Bücher, Axel & Volgushev, Stanislav & Zou, Nan, 2019. "On second order conditions in the multivariate block maxima and peak over threshold method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 604-619.
    9. Raza, Hamid & Wu, Weiou, 2018. "Quantile dependence between the stock, bond and foreign exchange markets – Evidence from the UK," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 286-296.
    10. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    11. Yuri Salazar & Wing Ng, 2015. "Nonparametric estimation of general multivariate tail dependence and applications to financial time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 121-158, March.
    12. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    13. Fischer, Matthias J. & Dörflinger, Marco, 2006. "A note on a non-parametric tail dependence estimator," Discussion Papers 76/2006, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    14. Trabelsi, Nader, 2017. "Asymmetric tail dependence between oil price shocks and sectors of Saudi Arabia System," The Journal of Economic Asymmetries, Elsevier, vol. 16(C), pages 26-41.
    15. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. A. P. Martins & J. R. Sebastião, 2019. "Methods for estimating the upcrossings index: improvements and comparison," Statistical Papers, Springer, vol. 60(4), pages 1317-1347, August.
    17. Schmid, Friedrich & Schmidt, Rafael, 2007. "Multivariate conditional versions of Spearman's rho and related measures of tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1123-1140, July.
    18. Roman Matkovskyy, 2019. "Extremal Economic (Inter)Dependence Studies: A Case of the Eastern European Countries," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 667-698, September.
    19. Jalan, Akanksha & Matkovskyy, Roman & Yarovaya, Larisa, 2021. "“Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:30:y:2021:i:1:d:10.1007_s11749-020-00709-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.