IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v244y2024i1s0304407624002100.html
   My bibliography  Save this article

On uniform confidence intervals for the tail index and the extreme quantile

Author

Listed:
  • Sasaki, Yuya
  • Wang, Yulong

Abstract

This paper presents two results concerning uniform confidence intervals for the tail index and the extreme quantile. First, we show that there exists a lower bound of the length for confidence intervals that satisfy the correct uniform coverage over a nonparametric family of tail distributions. Second, in light of the impossibility result, we construct honest confidence intervals that are uniformly valid by incorporating the worst-case bias in the nonparametric family. The proposed method is applied to simulated data and real data of financial time series.

Suggested Citation

  • Sasaki, Yuya & Wang, Yulong, 2024. "On uniform confidence intervals for the tail index and the extreme quantile," Journal of Econometrics, Elsevier, vol. 244(1).
  • Handle: RePEc:eee:econom:v:244:y:2024:i:1:s0304407624002100
    DOI: 10.1016/j.jeconom.2024.105865
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624002100
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armelle Guillou & Peter Hall, 2001. "A diagnostic for selecting the threshold in extreme value analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 293-305.
    2. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    3. Xavier Gabaix, 2016. "Power Laws in Economics: An Introduction," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 185-206, Winter.
    4. Timothy B. Armstrong & Michal Kolesár, 2018. "Optimal Inference in a Class of Regression Models," Econometrica, Econometric Society, vol. 86(2), pages 655-683, March.
    5. Timothy B. Armstrong & Michal Kolesár, 2020. "Simple and honest confidence intervals in nonparametric regression," Quantitative Economics, Econometric Society, vol. 11(1), pages 1-39, January.
    6. Timothy B Armstrong & Michal Kolesár, 2018. "A Simple Adjustment for Bandwidth Snooping," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 732-765.
    7. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility Regressions with Fat Tails," TSE Working Papers 20-1097, Toulouse School of Economics (TSE).
    8. Babii, Andrii, 2020. "Honest Confidence Sets In Nonparametric Iv Regression And Other Ill-Posed Models," Econometric Theory, Cambridge University Press, vol. 36(4), pages 658-706, August.
    9. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    10. Hill, Jonathan B. & Shneyerov, Artyom, 2013. "Are there common values in first-price auctions? A tail-index nonparametric test," Journal of Econometrics, Elsevier, vol. 174(2), pages 144-164.
    11. Gomes, M. Ivette & Pestana, Dinis, 2007. "A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 280-292, March.
    12. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    13. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    14. Hill, Jonathan B., 2010. "On Tail Index Estimation For Dependent, Heterogeneous Data," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1398-1436, October.
    15. Susanne M Schennach, 2020. "A Bias Bound Approach to Non-parametric Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(5), pages 2439-2472.
    16. Holger Drees, 1998. "On Smooth Statistical Tail Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 187-210, March.
    17. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    18. Gabaix, Xavier & Ibragimov, Rustam, 2011. "Rank − 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 24-39.
    19. M. Ivette Gomes & Laurens De Haan & Lígia Henriques Rodrigues, 2008. "Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 31-52, February.
    20. Yunan Wu & Lan Wang & Haoda Fu, 2023. "Model-Assisted Uniformly Honest Inference for Optimal Treatment Regimes in High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 305-314, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Tjeerd de Vries & Alexis Akira Toda, 2022. "Capital and Labor Income Pareto Exponents Across Time and Space," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(4), pages 1058-1078, December.
    3. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    4. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    5. Ignacio Rosal, 2018. "Power laws in EU country exports," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 45(2), pages 311-337, May.
    6. Asier Minondo, 2017. "Fundamental Versus Granular Comparative Advantage: An Analysis Using Chess Data," Kyklos, Wiley Blackwell, vol. 70(3), pages 425-455, August.
    7. Asier Minondo, 2016. "Fundamental comparative advantage versus random talent: An analysis using chess data," Working Papers 1605, Department of Applied Economics II, Universidad de Valencia.
    8. Ricardo T. Fernholz & Robert Fernholz, 2017. "Zipf's Law for Atlas Models," Papers 1707.04285, arXiv.org, revised Jun 2020.
    9. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    10. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    11. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    12. Luis Garicano & Claire Lelarge & John Van Reenen, 2016. "Firm Size Distortions and the Productivity Distribution: Evidence from France," American Economic Review, American Economic Association, vol. 106(11), pages 3439-3479, November.
    13. Rafael González‐Val, 2019. "Historical urban growth in Europe (1300–1800)," Papers in Regional Science, Wiley Blackwell, vol. 98(2), pages 1115-1136, April.
    14. Andrew Balthrop, 2016. "Power laws in oil and natural gas production," Empirical Economics, Springer, vol. 51(4), pages 1521-1539, December.
    15. Guohua Peng & Fan Xia, 2016. "The size distribution of exporting and non-exporting firms in a panel of Chinese provinces," Papers in Regional Science, Wiley Blackwell, vol. 95, pages 71-85, March.
    16. Walter Distaso & Rustam Ibragimov & Alexander Semenov & Anton Skrobotov, 2020. "COVID-19: Tail Risk and Predictive Regressions," Papers 2009.02486, arXiv.org, revised Oct 2021.
    17. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    18. Mary Amiti & Oleg Itskhoki & Jozef Konings, 2016. "International Shocks and Domestic Prices: How Large Are Strategic Complementarities?," NBER Working Papers 22119, National Bureau of Economic Research, Inc.
    19. Cirillo, Pasquale, 2013. "Are your data really Pareto distributed?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5947-5962.
    20. Ogwang, Tomson, 2013. "Is the wealth of the world’s billionaires Paretian?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 757-762.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:244:y:2024:i:1:s0304407624002100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.