IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v77y2009i2p179-195.html
   My bibliography  Save this article

Using Multiple Imputation to Integrate and Disseminate Confidential Microdata

Author

Listed:
  • Jerome P. Reiter

Abstract

In data integration contexts, two statistical agencies seek to merge their separate databases into one file. The agencies also may seek to disseminate data to the public based on the integrated file. These goals may be complicated by the agencies' need to protect the confidentiality of database subjects, which could be at risk during the integration or dissemination stage. This article proposes several approaches based on multiple imputation for disclosure limitation, usually called synthetic data, that could be used to facilitate data integration and dissemination while protecting data confidentiality. It reviews existing methods for obtaining inferences from synthetic data and points out where new methods are needed to implement the data integration proposals. Dans les contextes d'intégration de données, deux agences statistiques cherchent à fusionner leurs bases de données séparées en un fichier. Les agences peuvent aussi chercher à diffuser au public les données issues du fichier intégré. Ces objectifs peuvent être compliqués par le besoin de protéger la confidentialité des objets de la base de données, qui pourrait être menacé pendant la phase d'intégration et de diffusion. Cet article propose plusieurs approches basées sur l'imputation multiple pour limiter la divulgation, qu'on appelle habituellement données synthétiques, qui pourraient être utilisées pour faciliter l'intégration et la diffusion des données tout en protégeant leur confidentialité. Il passe en revue les méthodes existantes pour obtenir des inférences à partir de données synthétiques et montre les cas où l'on a besoin de nouvelles méthodes pour mettre en œuvre les propositions d'intégration de données.

Suggested Citation

  • Jerome P. Reiter, 2009. "Using Multiple Imputation to Integrate and Disseminate Confidential Microdata," International Statistical Review, International Statistical Institute, vol. 77(2), pages 179-195, August.
  • Handle: RePEc:bla:istatr:v:77:y:2009:i:2:p:179-195
    DOI: 10.1111/j.1751-5823.2009.00083.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2009.00083.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2009.00083.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reiter, Jerome P. & Raghunathan, Trivellore E., 2007. "The Multiple Adaptations of Multiple Imputation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1462-1471, December.
    2. Christine N. Kohnen & Jerome P. Reiter, 2009. "Multiple imputation for combining confidential data owned by two agencies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 511-528, April.
    3. Jerome P. Reiter, 2005. "Releasing multiply imputed, synthetic public use microdata: an illustration and empirical study," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 185-205, January.
    4. Reiter, Jerome P. & Oganian, Anna & Karr, Alan F., 2009. "Verification servers: Enabling analysts to assess the quality of inferences from public use data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1475-1482, February.
    5. Ghosh, Joyee & Reiter, Jerome P. & Karr, Alan F., 2007. "Secure computation with horizontally partitioned data using adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5813-5820, August.
    6. Reiter, Jerome P., 2008. "Selecting the number of imputed datasets when using multiple imputation for missing data and disclosure limitation," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 15-20, January.
    7. Natalie Shlomo, 2007. "Statistical Disclosure Control Methods for Census Frequency Tables," International Statistical Review, International Statistical Institute, vol. 75(2), pages 199-217, August.
    8. Drechsler, Jörg & Dundler, Agnes & Bender, Stefan & Rässler, Susanne & Zwick, Thomas, 2007. "A new approach for disclosure control in the IAB Establishment Panel : multiple imputation for a better data access," IAB-Discussion Paper 200711, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claire McKay Bowen & Fang Liu & Bingyue Su, 2021. "Differentially private data release via statistical election to partition sequentially," METRON, Springer;Sapienza Università di Roma, vol. 79(1), pages 1-31, April.
    2. Andreas Alfons & Stefan Kraft & Matthias Templ & Peter Filzmoser, 2011. "Simulation of close-to-reality population data for household surveys with application to EU-SILC," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(3), pages 383-407, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés F. Barrientos & Alexander Bolton & Tom Balmat & Jerome P. Reiter & John M. de Figueiredo & Ashwin Machanavajjhala & Yan Chen & Charles Kneifel & Mark DeLong, 2017. "A Framework for Sharing Confidential Research Data, Applied to Investigating Differential Pay by Race in the U. S. Government," NBER Working Papers 23534, National Bureau of Economic Research, Inc.
    2. Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
    3. Christine N. Kohnen & Jerome P. Reiter, 2009. "Multiple imputation for combining confidential data owned by two agencies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 511-528, April.
    4. Klein Martin & Sinha Bimal, 2013. "Statistical Analysis of Noise-Multiplied Data Using Multiple Imputation," Journal of Official Statistics, Sciendo, vol. 29(3), pages 425-465, June.
    5. Woodcock, Simon D. & Benedetto, Gary, 2009. "Distribution-preserving statistical disclosure limitation," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4228-4242, October.
    6. Dong Hua & Meeden Glen, 2016. "Constructing Synthetic Samples," Journal of Official Statistics, Sciendo, vol. 32(1), pages 113-127, March.
    7. Joseph W. Sakshaug & Trivellore E. Raghunathan, 2014. "Generating synthetic microdata to estimate small area statistics in the American Community Survey," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 341-368, June.
    8. Joshua Snoke & Gillian M. Raab & Beata Nowok & Chris Dibben & Aleksandra Slavkovic, 2018. "General and specific utility measures for synthetic data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 663-688, June.
    9. Yi Qian & Hui Xie, 2013. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," NBER Working Papers 19586, National Bureau of Economic Research, Inc.
    10. Joseph W. Sakshaug & Trivellore E. Raghunathan, 2014. "Generating synthetic data to produce public-use microdata for small geographic areas based on complex sample survey data with application to the National Health Interview Survey," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(10), pages 2103-2122, October.
    11. Drechsler, Jörg, 2011. "Methodenreport: Synthetische Scientific-Use-Files der Welle 2007 des IAB-Betriebspanels," FDZ Methodenreport 201101_de, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    12. Loong Bronwyn & Rubin Donald B., 2017. "Multiply-Imputed Synthetic Data: Advice to the Imputer," Journal of Official Statistics, Sciendo, vol. 33(4), pages 1005-1019, December.
    13. Chipperfield James O., 2014. "Disclosure-Protected Inference with Linked Microdata Using a Remote Analysis Server," Journal of Official Statistics, Sciendo, vol. 30(1), pages 123-146, March.
    14. Hang J. Kim & Jerome P. Reiter & Alan F. Karr, 2018. "Simultaneous edit-imputation and disclosure limitation for business establishment data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 63-82, January.
    15. Yi Qian & Hui Xie, 2015. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," Management Science, INFORMS, vol. 61(3), pages 520-541, March.
    16. Satkartar K. Kinney & Jerome P. Reiter & Javier Miranda, 2014. "Improving The Synthetic Longitudinal Business Database," Working Papers 14-12, Center for Economic Studies, U.S. Census Bureau.
    17. repec:cup:judgdm:v:15:y:2020:i:5:p:798-806 is not listed on IDEAS
    18. Yajuan Si & Jerome P. Reiter, 2013. "Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 499-521, October.
    19. Maurice Brandt & Dirk Oberschachtsiek & Ramona Pohl, 2008. "Neue Datenangebote in den Forschungsdatenzentren – Betriebs- und Unternehmensdaten im Längsschnitt –," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 2(3), pages 193-207, October.
    20. Llano, Carlos & Pardo, Juan & Pérez-Balsalobre, Santiago & Pérez, Julián, 2023. "Estimating multicountry tourism flows by transport mode," Annals of Tourism Research, Elsevier, vol. 103(C).
    21. Gerd Ronning, 2014. "Vertraulichkeit und Verfügbarkeit von Mikrodaten," IAW Discussion Papers 101, Institut für Angewandte Wirtschaftsforschung (IAW).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:77:y:2009:i:2:p:179-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.