IDEAS home Printed from https://ideas.repec.org/p/cen/wpaper/14-12.html
   My bibliography  Save this paper

Improving The Synthetic Longitudinal Business Database

Author

Listed:
  • Satkartar K. Kinney
  • Jerome P. Reiter
  • Javier Miranda

Abstract

In most countries, national statistical agencies do not release establishment-level business microdata, because doing so represents too large a risk to establishments’ confidentiality. Agencies potentially can manage these risks by releasing synthetic microdata, i.e., individual establishment records simulated from statistical models de- signed to mimic the joint distribution of the underlying observed data. Previously, we used this approach to generate a public-use version—now available for public use—of the U. S. Census Bureau’s Longitudinal Business Database (LBD), a longitudinal cen- sus of establishments dating back to 1976. While the synthetic LBD has proven to be a useful product, we now seek to improve and expand it by using new synthesis models and adding features. This article describes our efforts to create the second generation of the SynLBD, including synthesis procedures that we believe could be replicated in other contexts.

Suggested Citation

  • Satkartar K. Kinney & Jerome P. Reiter & Javier Miranda, 2014. "Improving The Synthetic Longitudinal Business Database," Working Papers 14-12, Center for Economic Studies, U.S. Census Bureau.
  • Handle: RePEc:cen:wpaper:14-12
    as

    Download full text from publisher

    File URL: https://www2.census.gov/ces/wp/2014/CES-WP-14-12.pdf
    File Function: First version, 2014
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miranda, Javier & Lars Vilhuber, 2014. "Looking Back On Three Years Of Using The Synthetic Lbd Beta," Working Papers 14-11, Center for Economic Studies, U.S. Census Bureau.
    2. Satkartar K. Kinney & Jerome P. Reiter & Arnold P. Reznek & Javier Miranda & Ron S. Jarmin & John M. Abowd, 2011. "Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database," International Statistical Review, International Statistical Institute, vol. 79(3), pages 362-384, December.
    3. Reiter, Jerome P. & Raghunathan, Trivellore E., 2007. "The Multiple Adaptations of Multiple Imputation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1462-1471, December.
    4. Ron S. Jarmin & Thomas A. Louis & Javier Miranda, 2014. "Expanding The Role Of Synthetic Data At The U.S. Census Bureau," Working Papers 14-10, Center for Economic Studies, U.S. Census Bureau.
    5. John M. Abowd & Simon D. Woodcock, 2004. "Multiply-Imputing Confidential Characteristics and File Links in Longitudinal Linked Data," Longitudinal Employer-Household Dynamics Technical Papers 2004-04, Center for Economic Studies, U.S. Census Bureau.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorg Drechsler & Lars Vilhuber, 2014. "A First Step Towards A German Synlbd: Constructing A German Longitudinal Business Database," Working Papers 14-13, Center for Economic Studies, U.S. Census Bureau.
    2. Miranda, Javier & Lars Vilhuber, 2014. "Looking Back On Three Years Of Using The Synthetic Lbd Beta," Working Papers 14-11, Center for Economic Studies, U.S. Census Bureau.
    3. Lars Vilhuber, 2024. "Using Containers for Analysis Validation at Scale," NBER Chapters, in: Data Privacy Protection and the Conduct of Applied Research: Methods, Approaches and their Consequences, National Bureau of Economic Research, Inc.
    4. Jahangir Alam M. & Dostie Benoit & Drechsler Jörg & Vilhuber Lars, 2020. "Applying data synthesis for longitudinal business data across three countries," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 212-236, August.
    5. Javier Miranda & Lars Vilhuber, 2016. "Using Partially Synthetic Microdata to Protect Sensitive Cells in Business Statistics," Working Papers 16-10, Center for Economic Studies, U.S. Census Bureau.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nowok, Beata & Raab, Gillian M. & Dibben, Chris, 2016. "synthpop: Bespoke Creation of Synthetic Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i11).
    2. Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
    3. Joseph W. Sakshaug & Trivellore E. Raghunathan, 2014. "Generating synthetic microdata to estimate small area statistics in the American Community Survey," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 341-368, June.
    4. Gary Benedetto & Jordan C. Stanley & Evan Totty, 2018. "The Creation and Use of the SIPP Synthetic Beta v7.0," CES Technical Notes Series 18-03, Center for Economic Studies, U.S. Census Bureau.
    5. Javier Miranda & Lars Vilhuber, 2016. "Using Partially Synthetic Microdata to Protect Sensitive Cells in Business Statistics," Working Papers 16-10, Center for Economic Studies, U.S. Census Bureau.
    6. Hang J. Kim & Jerome P. Reiter & Alan F. Karr, 2018. "Simultaneous edit-imputation and disclosure limitation for business establishment data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 63-82, January.
    7. Little Roderick J., 2013. "Discussion," Journal of Official Statistics, Sciendo, vol. 29(3), pages 363-366, June.
    8. Klein Martin & Sinha Bimal, 2013. "Statistical Analysis of Noise-Multiplied Data Using Multiple Imputation," Journal of Official Statistics, Sciendo, vol. 29(3), pages 425-465, June.
    9. Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodrígue, 2023. "An in-depth examination of requirements for disclosure risk assessment," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(43), pages 2220558120-, October.
    10. repec:cup:judgdm:v:15:y:2020:i:5:p:798-806 is not listed on IDEAS
    11. Yajuan Si & Jerome P. Reiter, 2013. "Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 499-521, October.
    12. Ainara González de San Román & Yolanda F. Rebollo‐Sanz, 2018. "An Estimation Of Worker And Firm Effects With Censored Data," Bulletin of Economic Research, Wiley Blackwell, vol. 70(4), pages 459-482, October.
    13. Woodcock, Simon D. & Benedetto, Gary, 2009. "Distribution-preserving statistical disclosure limitation," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4228-4242, October.
    14. David R. Munro, 2021. "Consumer Behavior and Firm Volatility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(4), pages 845-873, June.
    15. Llano, Carlos & Pardo, Juan & Pérez-Balsalobre, Santiago & Pérez, Julián, 2023. "Estimating multicountry tourism flows by transport mode," Annals of Tourism Research, Elsevier, vol. 103(C).
    16. Tatiana Komarova & Denis Nekipelov & Evgeny Yakovlev, 2018. "Identification, data combination, and the risk of disclosure," Quantitative Economics, Econometric Society, vol. 9(1), pages 395-440, March.
    17. Jared S. Murray & Jerome P. Reiter, 2016. "Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models With Local Dependence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1466-1479, October.
    18. Yulia V. Marchenko & Jerome P. Reiter, 2009. "Improved degrees of freedom for multivariate significance tests obtained from multiply imputed, small-sample data," Stata Journal, StataCorp LP, vol. 9(3), pages 388-397, September.
    19. Martin Klein & Ricardo Moura & Bimal Sinha, 2021. "Multivariate Normal Inference based on Singly Imputed Synthetic Data under Plug-in Sampling," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 273-287, May.
    20. Nathan Goldschlag & Javier Miranda, 2020. "Business dynamics statistics of High Tech industries," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 29(1), pages 3-30, January.
    21. Rashid, S. & Mitra, R. & Steele, R.J., 2015. "Using mixtures of t densities to make inferences in the presence of missing data with a small number of multiply imputed data sets," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 84-96.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cen:wpaper:14-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dawn Anderson (email available below). General contact details of provider: https://edirc.repec.org/data/cesgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.