IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i1p15-20.html
   My bibliography  Save this article

Selecting the number of imputed datasets when using multiple imputation for missing data and disclosure limitation

Author

Listed:
  • Reiter, Jerome P.

Abstract

Multiple imputation can handle missing data and disclosure limitation simultaneously. First, fill in the missing data to generate m completed datasets, then replace confidential values in each completed dataset with r imputations. I investigate how to select m and r.

Suggested Citation

  • Reiter, Jerome P., 2008. "Selecting the number of imputed datasets when using multiple imputation for missing data and disclosure limitation," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 15-20, January.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:1:p:15-20
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00165-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jerome P. Reiter, 2005. "Releasing multiply imputed, synthetic public use microdata: an illustration and empirical study," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 185-205, January.
    2. John M. Abowd & Simon D. Woodcock, 2004. "Multiply-Imputing Confidential Characteristics and File Links in Longitudinal Linked Data," Longitudinal Employer-Household Dynamics Technical Papers 2004-04, Center for Economic Studies, U.S. Census Bureau.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerome P. Reiter, 2009. "Using Multiple Imputation to Integrate and Disseminate Confidential Microdata," International Statistical Review, International Statistical Institute, vol. 77(2), pages 179-195, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
    2. Reiter, Jerome P. & Oganian, Anna & Karr, Alan F., 2009. "Verification servers: Enabling analysts to assess the quality of inferences from public use data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1475-1482, February.
    3. Klein Martin & Sinha Bimal, 2013. "Statistical Analysis of Noise-Multiplied Data Using Multiple Imputation," Journal of Official Statistics, Sciendo, vol. 29(3), pages 425-465, June.
    4. Woodcock, Simon D. & Benedetto, Gary, 2009. "Distribution-preserving statistical disclosure limitation," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4228-4242, October.
    5. Dong Hua & Meeden Glen, 2016. "Constructing Synthetic Samples," Journal of Official Statistics, Sciendo, vol. 32(1), pages 113-127, March.
    6. Martin Klein & Ricardo Moura & Bimal Sinha, 2021. "Multivariate Normal Inference based on Singly Imputed Synthetic Data under Plug-in Sampling," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 273-287, May.
    7. Joshua Snoke & Gillian M. Raab & Beata Nowok & Chris Dibben & Aleksandra Slavkovic, 2018. "General and specific utility measures for synthetic data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 663-688, June.
    8. Andrés F. Barrientos & Alexander Bolton & Tom Balmat & Jerome P. Reiter & John M. de Figueiredo & Ashwin Machanavajjhala & Yan Chen & Charles Kneifel & Mark DeLong, 2017. "A Framework for Sharing Confidential Research Data, Applied to Investigating Differential Pay by Race in the U. S. Government," NBER Working Papers 23534, National Bureau of Economic Research, Inc.
    9. Yi Qian & Hui Xie, 2013. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," NBER Working Papers 19586, National Bureau of Economic Research, Inc.
    10. Sonya Vartivarian & John L. Czajka & Michael Weber, "undated". "Measuring Disclosure Risk and an Examination of the Possibilities of Using Synthetic Data in the Individual Income Tax Return Public Use File," Mathematica Policy Research Reports ab85aed60a3e429786cfcbfdc, Mathematica Policy Research.
    11. Joseph W. Sakshaug & Trivellore E. Raghunathan, 2014. "Generating synthetic data to produce public-use microdata for small geographic areas based on complex sample survey data with application to the National Health Interview Survey," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(10), pages 2103-2122, October.
    12. Nowok, Beata & Raab, Gillian M. & Dibben, Chris, 2016. "synthpop: Bespoke Creation of Synthetic Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i11).
    13. Harrison Quick & Scott H. Holan & Christopher K. Wikle, 2018. "Generating partially synthetic geocoded public use data with decreased disclosure risk by using differential smoothing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 649-661, June.
    14. Nigel Melville & Michael McQuaid, 2012. "Research Note ---Generating Shareable Statistical Databases for Business Value: Multiple Imputation with Multimodal Perturbation," Information Systems Research, INFORMS, vol. 23(2), pages 559-574, June.
    15. Loong Bronwyn & Rubin Donald B., 2017. "Multiply-Imputed Synthetic Data: Advice to the Imputer," Journal of Official Statistics, Sciendo, vol. 33(4), pages 1005-1019, December.
    16. Chu, Amanda M.Y. & Ip, Chun Yin & Lam, Benson S.Y. & So, Mike K.P., 2022. "Vine copula statistical disclosure control for mixed-type data," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    17. Christine N. Kohnen & Jerome P. Reiter, 2009. "Multiple imputation for combining confidential data owned by two agencies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 511-528, April.
    18. Robbins Michael W., 2014. "The Utility of Nonparametric Transformations for Imputation of Survey Data," Journal of Official Statistics, Sciendo, vol. 30(4), pages 675-700, December.
    19. Yi Qian & Hui Xie, 2015. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," Management Science, INFORMS, vol. 61(3), pages 520-541, March.
    20. Satkartar K. Kinney & Jerome P. Reiter & Javier Miranda, 2014. "Improving The Synthetic Longitudinal Business Database," Working Papers 14-12, Center for Economic Studies, U.S. Census Bureau.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:1:p:15-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.