Generating synthetic microdata to estimate small area statistics in the American Community Survey
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Satkartar K. Kinney & Jerome P. Reiter & Arnold P. Reznek & Javier Miranda & Ron S. Jarmin & John M. Abowd, 2011.
"Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database,"
International Statistical Review, International Statistical Institute, vol. 79(3), pages 362-384, December.
- Satkartar K. Kinney & Jerome P. Reiter & Arnold P. Reznek & Javier Miranda & Ron S. Jarmin & John M. Abowd, 2011. "Towards Unrestricted Public Use Business Microdata: The Synthetic Longitudinal Business Database," Working Papers 11-04, Center for Economic Studies, U.S. Census Bureau.
- Reiter, Jerome P. & Raghunathan, Trivellore E., 2007. "The Multiple Adaptations of Multiple Imputation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1462-1471, December.
- Jerome P. Reiter, 2005. "Releasing multiply imputed, synthetic public use microdata: an illustration and empirical study," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 185-205, January.
- Mark Tranmer & Andrew Pickles & Ed Fieldhouse & Mark Elliot & Angela Dale & Mark Brown & David Martin & David Steel & Chris Gardiner, 2005. "The case for small area microdata," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 29-49, January.
- Karr, A.F. & Kohnen, C.N. & Oganian, A. & Reiter, J.P. & Sanil, A.P., 2006. "A Framework for Evaluating the Utility of Data Altered to Protect Confidentiality," The American Statistician, American Statistical Association, vol. 60, pages 224-232, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jason Hawkins & Khandker Nurul Habib, 2023. "A multi-source data fusion framework for joint population, expenditure, and time use synthesis," Transportation, Springer, vol. 50(4), pages 1323-1346, August.
- Madeleine I. G. Daepp, 2022. "Small-area moving ratios and the spatial connectivity of neighborhoods: Insights from consumer credit data," Environment and Planning B, , vol. 49(3), pages 1129-1146, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Joshua Snoke & Gillian M. Raab & Beata Nowok & Chris Dibben & Aleksandra Slavkovic, 2018. "General and specific utility measures for synthetic data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 663-688, June.
- Hang J. Kim & Jerome P. Reiter & Alan F. Karr, 2018. "Simultaneous edit-imputation and disclosure limitation for business establishment data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 63-82, January.
- Satkartar K. Kinney & Jerome P. Reiter & Javier Miranda, 2014. "Improving The Synthetic Longitudinal Business Database," Working Papers 14-12, Center for Economic Studies, U.S. Census Bureau.
- Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
- Klein Martin & Sinha Bimal, 2013. "Statistical Analysis of Noise-Multiplied Data Using Multiple Imputation," Journal of Official Statistics, Sciendo, vol. 29(3), pages 425-465, June.
- Woodcock, Simon D. & Benedetto, Gary, 2009.
"Distribution-preserving statistical disclosure limitation,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4228-4242, October.
- Woodcock, Simon & Benedetto, Gary, 2006. "Distribution-Preserving Statistical Disclosure Limitation," MPRA Paper 155, University Library of Munich, Germany.
- Simon D. Woodcock & Gary Benedetto, 2007. "Distribution-Preserving Statistical Disclosure Limitation," Discussion Papers dp07-15, Department of Economics, Simon Fraser University.
- Simon D. Woodcock & Gary Benedetto, 2006. "Distribution Preserving Statistical Disclosure Limitation," Longitudinal Employer-Household Dynamics Technical Papers 2006-04, Center for Economic Studies, U.S. Census Bureau.
- Tatiana Komarova & Denis Nekipelov & Evgeny Yakovlev, 2018.
"Identification, data combination, and the risk of disclosure,"
Quantitative Economics, Econometric Society, vol. 9(1), pages 395-440, March.
- Tatiana V. Komarova & Denis Nekipelov & Evgeny Yakovlev, 2011. "Identification, data combination and the risk of disclosure," CeMMAP working papers CWP38/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Komarova, Tatiana & Nekipelov, Denis & Yakovlev, Evgeny, 2018. "Identification, data combination and the risk of disclosure," LSE Research Online Documents on Economics 79384, London School of Economics and Political Science, LSE Library.
- Martin Klein & Ricardo Moura & Bimal Sinha, 2021. "Multivariate Normal Inference based on Singly Imputed Synthetic Data under Plug-in Sampling," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 273-287, May.
- Andrés F. Barrientos & Alexander Bolton & Tom Balmat & Jerome P. Reiter & John M. de Figueiredo & Ashwin Machanavajjhala & Yan Chen & Charles Kneifel & Mark DeLong, 2017. "A Framework for Sharing Confidential Research Data, Applied to Investigating Differential Pay by Race in the U. S. Government," NBER Working Papers 23534, National Bureau of Economic Research, Inc.
- Gary Benedetto & Jordan C. Stanley & Evan Totty, 2018. "The Creation and Use of the SIPP Synthetic Beta v7.0," CES Technical Notes Series 18-03, Center for Economic Studies, U.S. Census Bureau.
- Yi Qian & Hui Xie, 2013. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," NBER Working Papers 19586, National Bureau of Economic Research, Inc.
- Jörg Drechsler, 2015. "Multiple Imputation of Multilevel Missing Data—Rigor Versus Simplicity," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 69-95, February.
- Joseph W. Sakshaug & Trivellore E. Raghunathan, 2014. "Generating synthetic data to produce public-use microdata for small geographic areas based on complex sample survey data with application to the National Health Interview Survey," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(10), pages 2103-2122, October.
- Nowok, Beata & Raab, Gillian M. & Dibben, Chris, 2016. "synthpop: Bespoke Creation of Synthetic Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i11).
- Javier Miranda & Lars Vilhuber, 2016. "Using Partially Synthetic Microdata to Protect Sensitive Cells in Business Statistics," Working Papers 16-10, Center for Economic Studies, U.S. Census Bureau.
- Jerome P. Reiter, 2009. "Using Multiple Imputation to Integrate and Disseminate Confidential Microdata," International Statistical Review, International Statistical Institute, vol. 77(2), pages 179-195, August.
- Ian Lundberg & Arvind Narayanan & Karen Levy & Matthew Salganik, 2018. "Privacy, ethics, and data access: A case study of the Fragile Families Challenge," Working Papers wp18-09-ff, Princeton University, School of Public and International Affairs, Center for Research on Child Wellbeing..
- Loong Bronwyn & Rubin Donald B., 2017. "Multiply-Imputed Synthetic Data: Advice to the Imputer," Journal of Official Statistics, Sciendo, vol. 33(4), pages 1005-1019, December.
- Chu, Amanda M.Y. & Ip, Chun Yin & Lam, Benson S.Y. & So, Mike K.P., 2022. "Vine copula statistical disclosure control for mixed-type data," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
- Christine N. Kohnen & Jerome P. Reiter, 2009. "Multiple imputation for combining confidential data owned by two agencies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 511-528, April.
More about this item
Keywords
counties; microdata; multiple imputation; data confidentiality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:csb:stintr:v:15:y:2014:i:3:p:341-368. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beata Witek (email available below). General contact details of provider: https://edirc.repec.org/data/gusgvpl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.