IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v33y2017i4p1005-1019n8.html
   My bibliography  Save this article

Multiply-Imputed Synthetic Data: Advice to the Imputer

Author

Listed:
  • Loong Bronwyn

    (Australian National University – Research School of Finance, Actuarial Studies and Statistics, College of Business and Economics Building 26C The Australian National University Canberra, Canberra, Australian Capital Territory 2601, Australia.)

  • Rubin Donald B.

    (Harvard University – Department of Statistics, Cambridge, MA 02138-2901, United States of America.)

Abstract

Several statistical agencies have started to use multiply-imputed synthetic microdata to create public-use data in major surveys. The purpose of doing this is to protect the confidentiality of respondents’ identities and sensitive attributes, while allowing standard complete-data analyses of microdata. A key challenge, faced by advocates of synthetic data, is demonstrating that valid statistical inferences can be obtained from such synthetic data for non-confidential questions. Large discrepancies between observed-data and synthetic-data analytic results for such questions may arise because of uncongeniality; that is, differences in the types of inputs available to the imputer, who has access to the actual data, and to the analyst, who has access only to the synthetic data. Here, we discuss a simple, but possibly canonical, example of uncongeniality when using multiple imputation to create synthetic data, which specifically addresses the choices made by the imputer. An initial, unanticipated but not surprising, conclusion is that non-confidential design information used to impute synthetic data should be released with the confidential synthetic data to allow users of synthetic data to avoid possible grossly conservative inferences.

Suggested Citation

  • Loong Bronwyn & Rubin Donald B., 2017. "Multiply-Imputed Synthetic Data: Advice to the Imputer," Journal of Official Statistics, Sciendo, vol. 33(4), pages 1005-1019, December.
  • Handle: RePEc:vrs:offsta:v:33:y:2017:i:4:p:1005-1019:n:8
    DOI: 10.1515/jos-2017-0047
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jos-2017-0047
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jos-2017-0047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donald B. Rubin, 2003. "Nested multiple imputation of NMES via partially incompatible MCMC," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(1), pages 3-18, February.
    2. Drechsler, Jörg & Dundler, Agnes & Bender, Stefan & Rässler, Susanne & Zwick, Thomas, 2007. "A new approach for disclosure control in the IAB Establishment Panel : multiple imputation for a better data access," IAB-Discussion Paper 200711, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    3. Jerome P. Reiter, 2005. "Releasing multiply imputed, synthetic public use microdata: an illustration and empirical study," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 185-205, January.
    4. Drechsler, Jörg & Reiter, Jerome P., 2010. "Sampling With Synthesis: A New Approach for Releasing Public Use Census Microdata," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1347-1357.
    5. Duncan, George & Lambert, Diane, 1989. "The Risk of Disclosure for Microdata," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(2), pages 207-217, April.
    6. Karr, A.F. & Kohnen, C.N. & Oganian, A. & Reiter, J.P. & Sanil, A.P., 2006. "A Framework for Evaluating the Utility of Data Altered to Protect Confidentiality," The American Statistician, American Statistical Association, vol. 60, pages 224-232, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
    2. Jörg Drechsler, 2015. "Multiple Imputation of Multilevel Missing Data—Rigor Versus Simplicity," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 69-95, February.
    3. Reiter, Jerome P. & Drechsler, Jörg, 2007. "Releasing multiply-imputed synthetic data generated in two stages to protect confidentiality," IAB-Discussion Paper 200720, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    4. James Jackson & Robin Mitra & Brian Francis & Iain Dove, 2022. "Using saturated count models for user‐friendly synthesis of large confidential administrative databases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1613-1643, October.
    5. Joseph W. Sakshaug & Trivellore E. Raghunathan, 2014. "Generating synthetic microdata to estimate small area statistics in the American Community Survey," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 341-368, June.
    6. Joshua Snoke & Gillian M. Raab & Beata Nowok & Chris Dibben & Aleksandra Slavkovic, 2018. "General and specific utility measures for synthetic data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 663-688, June.
    7. Andrés F. Barrientos & Alexander Bolton & Tom Balmat & Jerome P. Reiter & John M. de Figueiredo & Ashwin Machanavajjhala & Yan Chen & Charles Kneifel & Mark DeLong, 2017. "A Framework for Sharing Confidential Research Data, Applied to Investigating Differential Pay by Race in the U. S. Government," NBER Working Papers 23534, National Bureau of Economic Research, Inc.
    8. Jahangir Alam M. & Dostie Benoit & Drechsler Jörg & Vilhuber Lars, 2020. "Applying data synthesis for longitudinal business data across three countries," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 212-236, August.
    9. Javier Miranda & Lars Vilhuber, 2016. "Using Partially Synthetic Microdata to Protect Sensitive Cells in Business Statistics," Working Papers 16-10, Center for Economic Studies, U.S. Census Bureau.
    10. Jerome P. Reiter, 2009. "Using Multiple Imputation to Integrate and Disseminate Confidential Microdata," International Statistical Review, International Statistical Institute, vol. 77(2), pages 179-195, August.
    11. Myron Gutmann & Kristine Witkowski & Corey Colyer & JoAnne O’Rourke & James McNally, 2008. "Providing Spatial Data for Secondary Analysis: Issues and Current Practices Relating to Confidentiality," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 27(6), pages 639-665, December.
    12. Hang J. Kim & Jerome P. Reiter & Alan F. Karr, 2018. "Simultaneous edit-imputation and disclosure limitation for business establishment data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 63-82, January.
    13. Reiter, Jerome P. & Oganian, Anna & Karr, Alan F., 2009. "Verification servers: Enabling analysts to assess the quality of inferences from public use data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1475-1482, February.
    14. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    15. Mittag, Nikolas, 2016. "Correcting for Misreporting of Government Benefits," IZA Discussion Papers 10266, Institute of Labor Economics (IZA).
    16. Klein Martin & Sinha Bimal, 2013. "Statistical Analysis of Noise-Multiplied Data Using Multiple Imputation," Journal of Official Statistics, Sciendo, vol. 29(3), pages 425-465, June.
    17. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2018. "Multiple Imputation of Missing Data at Level 2: A Comparison of Fully Conditional and Joint Modeling in Multilevel Designs," Journal of Educational and Behavioral Statistics, , vol. 43(3), pages 316-353, June.
    18. Claire McKay Bowen & Fang Liu & Bingyue Su, 2021. "Differentially private data release via statistical election to partition sequentially," METRON, Springer;Sapienza Università di Roma, vol. 79(1), pages 1-31, April.
    19. Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodrígue, 2023. "An in-depth examination of requirements for disclosure risk assessment," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(43), pages 2220558120-, October.
    20. Hammon, Angelina & Zinn, Sabine, 2020. "Multiple imputation of binary multilevel missing not at random data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 69(3), pages 547-564.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:33:y:2017:i:4:p:1005-1019:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.