IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2357-2369.html
   My bibliography  Save this article

CEDAR: communication efficient distributed analysis for regressions

Author

Listed:
  • Changgee Chang
  • Zhiqi Bu
  • Qi Long

Abstract

Electronic health records (EHRs) offer great promises for advancing precision medicine and, at the same time, present significant analytical challenges. Particularly, it is often the case that patient‐level data in EHRs cannot be shared across institutions (data sources) due to government regulations and/or institutional policies. As a result, there are growing interests about distributed learning over multiple EHRs databases without sharing patient‐level data. To tackle such challenges, we propose a novel communication efficient method that aggregates the optimal estimates of external sites, by turning the problem into a missing data problem. In addition, we propose incorporating posterior samples of remote sites, which can provide partial information on the missing quantities and improve efficiency of parameter estimates while having the differential privacy property and thus reducing the risk of information leaking. The proposed approach, without sharing the raw patient level data, allows for proper statistical inference. We provide theoretical investigation for the asymptotic properties of the proposed method for statistical inference as well as differential privacy, and evaluate its performance in simulations and real data analyses in comparison with several recently developed methods.

Suggested Citation

  • Changgee Chang & Zhiqi Bu & Qi Long, 2023. "CEDAR: communication efficient distributed analysis for regressions," Biometrics, The International Biometric Society, vol. 79(3), pages 2357-2369, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2357-2369
    DOI: 10.1111/biom.13786
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13786
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tang, Lu & Zhou, Ling & Song, Peter X.-K., 2020. "Distributed simultaneous inference in generalized linear models via confidence distribution," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    2. Min-ge Xie & Kesar Singh, 2013. "Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review," International Statistical Review, International Statistical Institute, vol. 81(1), pages 3-39, April.
    3. Ariel Kleiner & Ameet Talwalkar & Purnamrita Sarkar & Michael I. Jordan, 2014. "A scalable bootstrap for massive data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(4), pages 795-816, September.
    4. Michael I. Jordan & Jason D. Lee & Yun Yang, 2019. "Communication-Efficient Distributed Statistical Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 668-681, April.
    5. D. Y. Lin & D. Zeng, 2010. "On the relative efficiency of using summary statistics versus individual-level data in meta-analysis," Biometrika, Biometrika Trust, vol. 97(2), pages 321-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Shou‐En Lu & Jerry Q. Cheng & Minge Xie & John B. Kostis, 2022. "Multivariate survival analysis in big data: A divide‐and‐combine approach," Biometrics, The International Biometric Society, vol. 78(3), pages 852-866, September.
    2. Tang, Lu & Zhou, Ling & Song, Peter X.-K., 2020. "Distributed simultaneous inference in generalized linear models via confidence distribution," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    3. Xiang, Pengcheng & Zhou, Ling & Tang, Lu, 2024. "Transfer learning via random forests: A one-shot federated approach," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    4. Xingcai Zhou & Zhaoyang Jing & Chao Huang, 2024. "Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression," Mathematics, MDPI, vol. 12(5), pages 1-54, February.
    5. Lu Lin & Feng Li, 2023. "Global debiased DC estimations for biased estimators via pro forma regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 726-758, June.
    6. Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023. "Distributed ARIMA models for ultra-long time series," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
    7. Dungang Liu & Regina Y. Liu & Minge Xie, 2015. "Multivariate Meta-Analysis of Heterogeneous Studies Using Only Summary Statistics: Efficiency and Robustness," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 326-340, March.
    8. Delbianco Fernando & Tohmé Fernando, 2023. "What is a relevant control?: An algorithmic proposal," Asociación Argentina de Economía Política: Working Papers 4643, Asociación Argentina de Economía Política.
    9. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    10. Jincheng Zhou & James S. Hodges & Haitao Chu, 2020. "Rejoinder to “CACE and meta‐analysis (letter to the editor)” by Stuart Baker," Biometrics, The International Biometric Society, vol. 76(4), pages 1385-1389, December.
    11. Guang Yang & Dungang Liu & Junyuan Wang & Min‐ge Xie, 2016. "Meta‐analysis framework for exact inferences with application to the analysis of rare events," Biometrics, The International Biometric Society, vol. 72(4), pages 1378-1386, December.
    12. Guangbao Guo & Yue Sun & Xuejun Jiang, 2020. "A partitioned quasi-likelihood for distributed statistical inference," Computational Statistics, Springer, vol. 35(4), pages 1577-1596, December.
    13. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    14. Nicole Deflaux & Margaret Sunitha Selvaraj & Henry Robert Condon & Kelsey Mayo & Sara Haidermota & Melissa A. Basford & Chris Lunt & Anthony A. Philippakis & Dan M. Roden & Joshua C. Denny & Anjene Mu, 2023. "Demonstrating paths for unlocking the value of cloud genomics through cross cohort analysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Feifei Wang & Danyang Huang & Tianchen Gao & Shuyuan Wu & Hansheng Wang, 2022. "Sequential one‐step estimator by sub‐sampling for customer churn analysis with massive data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1753-1786, November.
    16. Xiaokang Luo & Tirthankar Dasgupta & Minge Xie & Regina Y. Liu, 2021. "Leveraging the Fisher randomization test using confidence distributions: Inference, combination and fusion learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 777-797, September.
    17. Guangbao Guo & Guoqi Qian & Lu Lin & Wei Shao, 2021. "Parallel inference for big data with the group Bayesian method," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 225-243, February.
    18. Dean Eckles & Maurits Kaptein, 2019. "Bootstrap Thompson Sampling and Sequential Decision Problems in the Behavioral Sciences," SAGE Open, , vol. 9(2), pages 21582440198, June.
    19. Ren, Yimeng & Li, Zhe & Zhu, Xuening & Gao, Yuan & Wang, Hansheng, 2024. "Distributed estimation and inference for spatial autoregression model with large scale networks," Journal of Econometrics, Elsevier, vol. 238(2).
    20. Zhang, Hong & Wu, Zheyang, 2022. "The general goodness-of-fit tests for correlated data," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2357-2369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.