What is a relevant control?: An algorithmic proposal
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Delbianco Fernando & Tohmé Fernando, 2023. "What is a relevant control?: An algorithmic proposal," Asociación Argentina de Economía Política: Working Papers 4643, Asociación Argentina de Economía Política.
References listed on IDEAS
- Min-ge Xie & Kesar Singh, 2013. "Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review," International Statistical Review, International Statistical Institute, vol. 81(1), pages 3-39, April.
- Xinran Li & Xiao-Li Meng, 2021. "A Multi-resolution Theory for Approximating Infinite-p-Zero-n: Transitional Inference, Individualized Predictions, and a World Without Bias-Variance Tradeoff," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 353-367, January.
- Andrew Gelman & Christian Hennig, 2017. "Beyond subjective and objective in statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 967-1033, October.
- Salvador Romaguera, 2022. "Basic Contractions of Suzuki-Type on Quasi-Metric Spaces and Fixed Point Results," Mathematics, MDPI, vol. 10(21), pages 1-13, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fernando Delbianco & Fernando Tohmé, 2023. "Individualized Conformal," Working Papers 247, Red Nacional de Investigadores en Economía (RedNIE).
- Mayo, Deborah, 2024. "Error statistics, Bayes-factor Tests and the Fallacy of Non-exhaustive Alternatives," OSF Preprints tmgqd, Center for Open Science.
- Xuhua Liu & Xingzhong Xu, 2016. "Confidence distribution inferences in one-way random effects model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 59-74, March.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Claudia Biancotti & Alfonso Rosolia & Giovanni Veronese & Robert Kirchner & Francois Mouriaux, 2021. "Covid-19 and official statistics: a wakeup call?," Questioni di Economia e Finanza (Occasional Papers) 605, Bank of Italy, Economic Research and International Relations Area.
- Eugenio Melilli & Piero Veronese, 2024. "Confidence distributions and hypothesis testing," Statistical Papers, Springer, vol. 65(6), pages 3789-3820, August.
- Francesco De Pretis & Barbara Osimani, 2019. "New Insights in Computational Methods for Pharmacovigilance: E-Synthesis , a Bayesian Framework for Causal Assessment," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
- Seungyong Hwang & Randy C. S. Lai & Thomas C. M. Lee, 2022. "Generalized Fiducial Inference for Threshold Estimation in Dose–Response and Regression Settings," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 109-124, March.
- Guang Yang & Dungang Liu & Junyuan Wang & Min‐ge Xie, 2016. "Meta‐analysis framework for exact inferences with application to the analysis of rare events," Biometrics, The International Biometric Society, vol. 72(4), pages 1378-1386, December.
- Tang, Lu & Zhou, Ling & Song, Peter X.-K., 2020. "Distributed simultaneous inference in generalized linear models via confidence distribution," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
- Wu, Suofei & Hannig, Jan & Lee, Thomas C.M., 2022. "Uncertainty quantification for honest regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Lutz Bornmann & Julian N. Marewski, 2024. "Opium in science and society: numbers and other quantifications," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5313-5346, September.
- David R. Bickel, 2014. "Small-scale Inference: Empirical Bayes and Confidence Methods for as Few as a Single Comparison," International Statistical Review, International Statistical Institute, vol. 82(3), pages 457-476, December.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
- La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023.
"A higher-order correct fast moving-average bootstrap for dependent data,"
Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
- Davide La Vecchia & Alban Moor & Olivier Scaillet, 2020. "A Higher-Order Correct Fast Moving-Average Bootstrap for Dependent Data," Papers 2001.04867, arXiv.org, revised Jan 2022.
- La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2020. "A higher-order correct fast moving-average bootstrap for dependent data," Working Papers unige:129395, University of Geneva, Geneva School of Economics and Management.
- Davide La Vecchia & Alban Moor & O. Scaillet, 2020. "A Higher-Order Correct Fast Moving-Average Bootstrap for Dependent Data," Swiss Finance Institute Research Paper Series 20-01, Swiss Finance Institute.
- Élise, COUDIN & Jean-Marie DUFOUR, 2017.
"Finite-Sample Generalized Confidence Distributions and Sign-Based Robust Estimators in Median Regressions with Heterogeneous Dependent Errors,"
Cahiers de recherche
01-2017, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Elise Coudin & Jean-Marie Dufour, 2017. "Finite-sample generalized confidence distributions and sign-based robust estimators in median regressions with heterogenous dependent errors," CIRANO Working Papers 2017s-06, CIRANO.
- Gunnar Taraldsen, 2023. "The Confidence Density for Correlation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 600-616, February.
- Lee Youngjo & Gwangsu Kim, 2020. "Properties of h‐Likelihood Estimators in Clustered Data," International Statistical Review, International Statistical Institute, vol. 88(2), pages 380-395, August.
- Hector, Emily C. & Luo, Lan & Song, Peter X.-K., 2023. "Parallel-and-stream accelerator for computationally fast supervised learning," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
More about this item
Keywords
Individualized inference; Relevance selection; and classification; Synthetic controls;All these keywords.
JEL classification:
- C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2023-09-25 (Econometrics)
- NEP-GTH-2023-09-25 (Game Theory)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aoz:wpaper:269. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Inés D Amato (email available below). General contact details of provider: https://edirc.repec.org/data/redniar.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.