IDEAS home Printed from https://ideas.repec.org/p/aoz/wpaper/269.html
   My bibliography  Save this paper

What is a relevant control?: An algorithmic proposal

Author

Listed:
  • Fernando Delbianco

    (UNS/CONICET)

  • Fernando Tohmé

    (UNS/CONICET)

Abstract

Individualized inference (or prediction) is an approach to data analysis that is increasingly relevant thanks to the availability of large datasets. In this paper, we present an algorithm that starts by detecting the relevant observations for a given query. Further refinement of that subsample is obtained by selecting the ones with the largest Shapley values. The probability distribution over this selection allows to generate synthetic controls, which in turn can be used to generate a robust inference (or prediction). Data collected from repeating this procedure for different queries provides a deeper understanding of the general process that generates the data.

Suggested Citation

  • Fernando Delbianco & Fernando Tohmé, 2023. "What is a relevant control?: An algorithmic proposal," Working Papers 269, Red Nacional de Investigadores en Economía (RedNIE).
  • Handle: RePEc:aoz:wpaper:269
    as

    Download full text from publisher

    File URL: https://rednie.eco.unc.edu.ar/files/DT/269.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrew Gelman & Christian Hennig, 2017. "Beyond subjective and objective in statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 967-1033, October.
    2. Min-ge Xie & Kesar Singh, 2013. "Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review," International Statistical Review, International Statistical Institute, vol. 81(1), pages 3-39, April.
    3. Xinran Li & Xiao-Li Meng, 2021. "A Multi-resolution Theory for Approximating Infinite-p-Zero-n: Transitional Inference, Individualized Predictions, and a World Without Bias-Variance Tradeoff," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 353-367, January.
    4. Salvador Romaguera, 2022. "Basic Contractions of Suzuki-Type on Quasi-Metric Spaces and Fixed Point Results," Mathematics, MDPI, vol. 10(21), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Delbianco & Fernando Tohmé, 2023. "Individualized Conformal," Working Papers 247, Red Nacional de Investigadores en Economía (RedNIE).
    2. Mayo, Deborah, 2024. "Error statistics, Bayes-factor Tests and the Fallacy of Non-exhaustive Alternatives," OSF Preprints tmgqd, Center for Open Science.
    3. Francesco De Pretis & Barbara Osimani, 2019. "New Insights in Computational Methods for Pharmacovigilance: E-Synthesis , a Bayesian Framework for Causal Assessment," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    4. Guang Yang & Dungang Liu & Junyuan Wang & Min‐ge Xie, 2016. "Meta‐analysis framework for exact inferences with application to the analysis of rare events," Biometrics, The International Biometric Society, vol. 72(4), pages 1378-1386, December.
    5. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    6. Xiaokang Luo & Tirthankar Dasgupta & Minge Xie & Regina Y. Liu, 2021. "Leveraging the Fisher randomization test using confidence distributions: Inference, combination and fusion learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 777-797, September.
    7. Zhao, Xiujie & Chen, Piao & Gaudoin, Olivier & Doyen, Laurent, 2021. "Accelerated degradation tests with inspection effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1099-1114.
    8. Erlis Ruli & Laura Ventura, 2021. "Can Bayesian, confidence distribution and frequentist inference agree?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 359-373, March.
    9. Piero Veronese & Eugenio Melilli, 2021. "Confidence Distribution for the Ability Parameter of the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 131-166, March.
    10. Veronese, Piero & Melilli, Eugenio, 2018. "Some asymptotic results for fiducial and confidence distributions," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 98-105.
    11. Lutz Bornmann & Julian N. Marewski, 2024. "Opium in science and society: numbers and other quantifications," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5313-5346, September.
    12. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    13. Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
    14. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    15. Nancy Reid & David R. Cox, 2015. "On Some Principles of Statistical Inference," International Statistical Review, International Statistical Institute, vol. 83(2), pages 293-308, August.
    16. Randy C. S. Lai & Jan Hannig & Thomas C. M. Lee, 2015. "Generalized Fiducial Inference for Ultrahigh-Dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 760-772, June.
    17. Wei Wang & Shou‐En Lu & Jerry Q. Cheng & Minge Xie & John B. Kostis, 2022. "Multivariate survival analysis in big data: A divide‐and‐combine approach," Biometrics, The International Biometric Society, vol. 78(3), pages 852-866, September.
    18. Elise Coudin & Jean-Marie Dufour, 2017. "Finite-sample generalized confidence distributions and sign-based robust estimators in median regressions with heterogenous dependent errors," CIRANO Working Papers 2017s-06, CIRANO.
    19. Elena Grimaccia & Alessia Naccarato, 2019. "Food Insecurity Individual Experience: A Comparison of Economic and Social Characteristics of the Most Vulnerable Groups in the World," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(1), pages 391-410, May.
    20. Jingjing He & Wei Wang & Min Huang & Shaohua Wang & Xuefei Guan, 2021. "Bayesian Inference under Small Sample Sizes Using General Noninformative Priors," Mathematics, MDPI, vol. 9(21), pages 1-20, November.

    More about this item

    Keywords

    Individualized inference; Relevance selection; and classification; Synthetic controls;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aoz:wpaper:269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Inés D Amato (email available below). General contact details of provider: https://edirc.repec.org/data/redniar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.